Facebook Instagram Youtube Twitter

Was ist Schaumglas – Zellglas – Definition

Zellglas (Schaumglas) ist ein Glasschaumstoff, der aus einer Reaktion zwischen Glas und Kohlenstoff bei hohen Temperaturen entsteht. Schaumglas hat eine zelluläre Struktur. Wärmetechnik

Schaumglas – Zellglas

Schaumglas - SchaumglasZellglas ( Schaumglas ) ist ein Glasschaumstoff, der aus einer Reaktion zwischen Glas und Kohlenstoff bei hohen Temperaturen entsteht. Schaumglas hat eine zelluläre Struktur und ist undurchlässig. Es hat gute thermische Eigenschaften und daher kann eine Wärmedämmung verwendet werden. Seine hohe Undurchlässigkeit macht es ideal als Barriere gegen Bodenfeuchtigkeit. Da Schaumglas vollständig aus anorganischen Materialien besteht, ist es nicht brennbar. Schaumglas hat auch eine hohe Druckfestigkeit, wodurch das Material sehr gut für die Dämmung von Flachdächern geeignet ist, die mit Bitumen anderer schwerer Substanzen bedeckt sind. Andererseits ist Schaumglas wegen seiner hohen Undurchlässigkeit nicht für die Dämmung von Holzböden geeignet.

 

Wärmeleitfähigkeit von Schaumglas

Wärmeisolatoren - ParameterWärmeleitfähigkeit ist definiert als die Wärmemenge (in Watt), die aufgrund eines Temperaturunterschieds durch eine quadratische Materialfläche gegebener Dicke (in Metern) übertragen wird . Je niedriger die Wärmeleitfähigkeit des Materials ist, desto widerstandsfähiger ist das Material gegen Wärmeübertragung und desto wirksamer ist die Isolierung. Typische Wärmeleitfähigkeitswerte für das Schaumglas  sind zwischen 0,038 und 0.055W / m ∙ K .

Im Allgemeinen beruht die Wärmedämmung in erster Linie auf der sehr geringen Wärmeleitfähigkeit von Gasen . Gase besitzen im Vergleich zu Flüssigkeiten und Feststoffen schlechte Wärmeleitungseigenschaften und sind daher ein gutes Isolationsmaterial, wenn sie eingeschlossen werden können (z. B. in einer schaumartigen Struktur). Luft und andere Gase sind im Allgemeinen gute Isolatoren. Der Hauptvorteil liegt jedoch in der Abwesenheit von Konvektion. Daher funktionieren viele Isoliermaterialien (z. B. Schaumglas ) einfach dadurch, dass sie eine große Anzahl gasgefüllter Taschen aufweisen, die eine großflächige Konvektion verhindern .

Der Wechsel von Gastasche und festem Material führt dazu, dass die Wärme über viele Grenzflächen übertragen werden muss, was zu einer raschen Abnahme des Wärmeübergangskoeffizienten führt.

Beispiel – Schaumglas

Wärmeverlust durch Wand - Beispiel - BerechnungEine Hauptquelle für den Wärmeverlust eines Hauses sind Wände. Berechnen Sie die Wärmestromrate durch eine Wand mit einer Fläche von 3 mx 10 m (A = 30 m 2 ). Die Wand ist 15 cm dick (L 1 ) und besteht aus Ziegeln mit einer Wärmeleitfähigkeit von k 1 = 1,0 W / mK (schlechter Wärmeisolator). Angenommen, die Innen- und Außentemperaturen betragen 22 ° C und -8 ° C, und die Konvektionswärmeübertragungskoeffizienten an der Innen- und der Außenseite betragen h 1 = 10 W / m 2 K und h 2 = 30 W / m 2K jeweils. Beachten Sie, dass diese Konvektionskoeffizienten stark von den Umgebungs- und Innenbedingungen (Wind, Luftfeuchtigkeit usw.) abhängen.

  1. Berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese nicht isolierte Wand.
  2. Nehmen Sie nun die Wärmedämmung an der Außenseite dieser Wand an. Verwenden Sie eine 10 cm dicke Schaumglasisolierung  (L 2 ) mit einer Wärmeleitfähigkeit von k 2 = 0,04 W / mK und berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese Verbundwand.

Lösung:

Wie bereits erwähnt, handelt es sich bei vielen Wärmeübertragungsprozessen um Verbundsysteme und sogar um eine Kombination aus Wärmeleitung und Konvektion . Bei diesen Verbundsystemen ist es häufig zweckmäßig, mit einem Gesamtwärmeübergangskoeffizienten zu arbeiten , der als U-Faktor bezeichnet wird . Der U-Faktor wird durch einen Ausdruck definiert, der dem Newtonschen Gesetz der Abkühlung entspricht :

U-Faktor - Gesamtwärmeübergangskoeffizient

Der Gesamtwärmeübertragungskoeffizient ist mit dem im Zusammenhang Gesamtwärmewiderstand und ist abhängig von der Geometrie des Problems.

  1. nackte Wand

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Wand und ohne Berücksichtigung der Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Wärmeverlustberechnung

Der Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 3,53 [W / m 2 K] × 30 [K] = 105,9 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 105,9 [W / m 2 ] × 30 [m 2 ] = 3177 W

  1. Verbundwand mit Wärmedämmung

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Verbundwand, ohne Wärmekontaktwiderstand und ohne Berücksichtigung von Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Berechnung der Wärmedämmung

Schaumglas - ZellglasDer Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 0,1 / 0,040 + 1/30) = 0,359 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 0,359 [W / m 2 K] × 30 [K] = 10,78 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 10,78 [W / m 2 ] × 30 [m 2 ] = 323 W

Wie zu sehen ist, bewirkt eine Zugabe eines Wärmeisolators eine signifikante Verringerung der Wärmeverluste. Es muss hinzugefügt werden, ein Hinzufügen der nächsten Schicht Wärmeisolator führt nicht zu so hohen Einsparungen. Dies ist am Wärmewiderstand besser zu erkennen, mit dem der Wärmeübergang durch Verbundwände berechnet werden kann . Die Geschwindigkeit der gleichmäßigen Wärmeübertragung zwischen zwei Oberflächen ist gleich der Temperaturdifferenz geteilt durch den gesamten Wärmewiderstand zwischen diesen beiden Oberflächen.

Wärmewiderstand - Gleichung

…………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.

Das Beispiel – Berechnung der Baumwollisolierung – Definition

Beispiel – Baumwollisolationsberechnung. Berechnen Sie den Wärmefluss (Wärmeverlust) durch die isolierte Wand. Verwenden Sie eine 10 cm dicke Baumwollisolierung. Vergleichen Sie es mit einer bloßen Wand. Wärmetechnik

Beispiel – Baumwollisolierung

Wärmeverlust durch Wand - Beispiel - BerechnungEine Hauptquelle für den Wärmeverlust eines Hauses sind Wände. Berechnen Sie die Wärmestromrate durch eine Wand mit einer Fläche von 3 mx 10 m (A = 30 m 2 ). Die Wand ist 15 cm dick (L 1 ) und besteht aus Ziegeln mit einer Wärmeleitfähigkeit von k 1 = 1,0 W / mK (schlechter Wärmeisolator). Angenommen, die Innen- und Außentemperaturen betragen 22 ° C und -8 ° C, und die Konvektionswärmeübertragungskoeffizienten an der Innen- und der Außenseite betragen h 1 = 10 W / m 2 K und h 2 = 30 W / m 2K jeweils. Beachten Sie, dass diese Konvektionskoeffizienten stark von den Umgebungs- und Innenbedingungen (Wind, Luftfeuchtigkeit usw.) abhängen.

  1. Berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese nicht isolierte Wand.
  2. Nehmen Sie nun die Wärmedämmung an der Außenseite dieser Wand an. Verwenden Sie eine 10 cm dicke Baumwolldämmung  (L 2 ) mit einer Wärmeleitfähigkeit von k 2 = 0,04 W / mK und berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese Verbundwand.

Lösung:

Wie bereits erwähnt, beinhalten viele der Wärmeübertragungsprozesse Verbundsysteme und sogar eine Kombination aus Wärmeleitung und Konvektion . Bei diesen Verbundsystemen ist es häufig zweckmäßig, mit einem Gesamtwärmeübergangskoeffizienten zu arbeiten , der als U-Faktor bezeichnet wird . Der U-Faktor wird durch einen Ausdruck definiert, der dem Newtonschen Gesetz der Abkühlung entspricht :

U-Faktor - Gesamtwärmeübergangskoeffizient

Der Gesamtwärmeübertragungskoeffizient ist , bezogen auf den Gesamtwärmewiderstand und ist abhängig von der Geometrie des Problems.

  1. nackte Wand

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Wand und ohne Berücksichtigung der Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Wärmeverlustberechnung

Der Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 3,53 [W / m 2 K] × 30 [K] = 105,9 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 105,9 [W / m 2 ] × 30 [m 2 ] = 3177 W

  1. Verbundwand mit Wärmedämmung

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Verbundwand, ohne Wärmekontaktwiderstand und ohne Berücksichtigung von Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Berechnung der Wärmedämmung

BaumwollisolierungDer Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 0,1 / 0,040 + 1/30) = 0,359 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 0,359 [W / m 2 K] × 30 [K] = 10,78 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 10,78 [W / m 2 ] × 30 [m 2 ] = 323 W

Wie zu sehen ist, bewirkt eine Zugabe eines Wärmeisolators eine signifikante Verringerung der Wärmeverluste. Es muss hinzugefügt werden, ein Hinzufügen der nächsten Schicht Wärmeisolator führt nicht zu so hohen Einsparungen. Dies ist am Wärmewiderstand besser zu erkennen, mit dem der Wärmeübergang durch Verbundwände berechnet werden kann . Die Geschwindigkeit der gleichmäßigen Wärmeübertragung zwischen zwei Oberflächen ist gleich der Temperaturdifferenz geteilt durch den gesamten Wärmewiderstand zwischen diesen beiden Oberflächen.

Wärmewiderstand - Gleichung

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.

Was ist Wärmeleitfähigkeit von Baumwollisolierungen – Definition

Wärmeleitfähigkeit der Baumwollisolierung. Typische Wärmeleitfähigkeitswerte für Baumwollisolierungen liegen bei 0,035 W / m m K. Wärmetechnik

Wärmeleitfähigkeit von Baumwollisolierungen

Wärmeisolatoren - ParameterWärmeleitfähigkeit ist definiert als die Wärmemenge (in Watt), die aufgrund eines Temperaturunterschieds durch eine quadratische Materialfläche gegebener Dicke (in Metern) übertragen wird . Je niedriger die Wärmeleitfähigkeit des Materials ist, desto widerstandsfähiger ist das Material gegen Wärmeübertragung und desto wirksamer ist die Isolierung. Typische Wärmeleitfähigkeitswerte für Baumwolle Isolierung  ist um  0,035 W / m ∙ K .

Im Allgemeinen beruht die Wärmedämmung in erster Linie auf der sehr geringen Wärmeleitfähigkeit von Gasen . Gase weisen im Vergleich zu Flüssigkeiten und Feststoffen schlechte Wärmeleitungseigenschaften auf und sind daher ein gutes Isolationsmaterial, wenn sie eingeschlossen werden können (z. B. in einer schaumartigen Struktur). Luft und andere Gase sind im Allgemeinen gute Isolatoren. Der Hauptvorteil liegt jedoch in der Abwesenheit von Konvektion. Daher funktionieren viele Isoliermaterialien (z. B. Baumwollisolierung ) einfach dadurch, dass sie eine große Anzahl von gasgefüllten Taschen aufweisen, die eine Konvektion im großen Maßstab verhindern .

Der Wechsel von Gastasche und festem Material führt dazu, dass die Wärme über viele Grenzflächen übertragen werden muss, was zu einer raschen Abnahme des Wärmeübertragungskoeffizienten führt.

 

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.

Das Beispiel – Berechnung der Korkisolierung – Definition

Beispiel – Berechnung der Korkisolierung. Berechnen Sie den Wärmefluss (Wärmeverlust) durch die isolierte Wand. Verwenden Sie eine 10 cm dicke Korkisolierung. Vergleichen Sie es mit einer bloßen Wand. Wärmetechnik

Beispiel – Korkisolierung

Wärmeverlust durch Wand - Beispiel - BerechnungEine Hauptquelle für den Wärmeverlust eines Hauses sind Wände. Berechnen Sie die Wärmestromrate durch eine Wand mit einer Fläche von 3 mx 10 m (A = 30 m 2 ). Die Wand ist 15 cm dick (L 1 ) und besteht aus Ziegeln mit einer Wärmeleitfähigkeit von k 1 = 1,0 W / mK (schlechter Wärmeisolator). Angenommen, die Innen- und Außentemperaturen betragen 22 ° C und -8 ° C, und die Konvektionswärmeübertragungskoeffizienten an der Innen- und der Außenseite betragen h 1 = 10 W / m 2 K und h 2 = 30 W / m 2K jeweils. Beachten Sie, dass diese Konvektionskoeffizienten stark von den Umgebungs- und Innenbedingungen (Wind, Luftfeuchtigkeit usw.) abhängen.

  1. Berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese nicht isolierte Wand.
  2. Nehmen Sie nun die Wärmedämmung an der Außenseite dieser Wand an. Verwenden Sie 10 cm dicken Kork  (L 2 ) mit einer Wärmeleitfähigkeit von k 2 = 0,038 W / mK und berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese Verbundwand.

Lösung:

Wie bereits erwähnt, beinhalten viele der Wärmeübertragungsprozesse Verbundsysteme und sogar eine Kombination aus Wärmeleitung und Konvektion . Bei diesen Verbundsystemen ist es häufig zweckmäßig, mit einem Gesamtwärmeübergangskoeffizienten zu arbeiten , der als U-Faktor bezeichnet wird . Der U-Faktor wird durch einen Ausdruck definiert, der dem Newtonschen Gesetz der Abkühlung entspricht :

U-Faktor - Gesamtwärmeübergangskoeffizient

Der Gesamtwärmeübertragungskoeffizient ist , bezogen auf den Gesamtwärmewiderstand und ist abhängig von der Geometrie des Problems.

  1. nackte Wand

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Wand und ohne Berücksichtigung der Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Wärmeverlustberechnung

Der Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 3,53 [W / m 2 K] × 30 [K] = 105,9 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 105,9 [W / m 2 ] × 30 [m 2 ] = 3177 W

  1. Verbundwand mit Wärmedämmung

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Verbundwand, ohne Wärmekontaktwiderstand und ohne Berücksichtigung von Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Berechnung der Wärmedämmung

KorkisolierungDer Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 0,1 / 0,038 + 1/30) = 0,343 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 0,343 [W / m 2 K] × 30 [K] = 10,29 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 10,29 [W / m 2 ] × 30 [m 2 ] = 308 W

Wie zu sehen ist, bewirkt eine Zugabe eines Wärmeisolators eine signifikante Verringerung der Wärmeverluste. Es muss hinzugefügt werden, ein Hinzufügen der nächsten Schicht Wärmeisolator führt nicht zu so hohen Einsparungen. Dies ist am Wärmewiderstand besser zu erkennen, mit dem der Wärmeübergang durch Verbundwände berechnet werden kann . Die Geschwindigkeit der gleichmäßigen Wärmeübertragung zwischen zwei Oberflächen ist gleich der Temperaturdifferenz geteilt durch den gesamten Wärmewiderstand zwischen diesen beiden Oberflächen.

Wärmewiderstand - Gleichung

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.

Was ist Wärmeleitfähigkeit der Korkisolierung – Definition

Wärmeleitfähigkeit der Korkisolierung. Typische Wärmeleitfähigkeitswerte für Kork liegen zwischen 0,035 und 0,040 W / m ∙ K. Wärmetechnik

Wärmeleitfähigkeit der Korkisolierung

Wärmeisolatoren - ParameterWärmeleitfähigkeit ist definiert als die Wärmemenge (in Watt), die aufgrund eines Temperaturunterschieds durch eine quadratische Materialfläche gegebener Dicke (in Metern) übertragen wird . Je niedriger die Wärmeleitfähigkeit des Materials ist, desto widerstandsfähiger ist das Material gegen Wärmeübertragung und desto wirksamer ist die Isolierung. Typische Wärmeleitfähigkeitswerte für Kork zwischen 0,035 und 0.043W / m ∙ K .

Im Allgemeinen beruht die Wärmedämmung in erster Linie auf der sehr geringen Wärmeleitfähigkeit von Gasen . Gase weisen im Vergleich zu Flüssigkeiten und Feststoffen schlechte Wärmeleitungseigenschaften auf und sind daher ein gutes Isolationsmaterial, wenn sie eingeschlossen werden können (z. B. in einer schaumartigen Struktur). Luft und andere Gase sind im Allgemeinen gute Isolatoren. Der Hauptvorteil liegt jedoch in der Abwesenheit von Konvektion. Daher funktionieren viele Isoliermaterialien (z. B. Korkisolierung ) einfach dadurch, dass sie eine große Anzahl gasgefüllter Taschen aufweisen, die eine Konvektion im großen Maßstab verhindern .

Der Wechsel von Gastasche und festem Material führt dazu, dass die Wärme über viele Grenzflächen übertragen werden muss, was zu einer raschen Abnahme des Wärmeübertragungskoeffizienten führt.

 

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.

Was ist Korkisolierung – Definition

Kork ist ein natürliches Material, das aus der Korkeiche hergestellt wird. Aufgrund seiner Struktur und seiner natürlichen Feuerhemmung eignet sich Cork auch zur Schall- und Wärmedämmung von Hauswänden, -böden und -decken.

Kork-Isolierung

Kork ist ein natürliches Material, das aus der in Südwesteuropa und Nordwestafrika endemischen Korkeiche hergestellt wird. Da es undurchlässig, schwimmfähig, elastisch und feuerhemmend ist, wird Kork in einer Vielzahl von Produkten verwendet, von denen die meisten Weinstopfen sind. Aufgrund seiner Struktur und seiner natürlichen Feuerhemmung eignet sich Cork auch zur Schall- und Wärmedämmung von Hauswänden, -böden und -decken. Da Kork ein Zellmaterial ist, ist der Wasserdampfbeständigkeitsfaktor des Materials höher als der der anderen nachwachsenden Rohstoffe. Kork ist eine beliebte und sichere Alternative zu Isolationsprodukten auf petrochemischer Basis.

 

Wärmeleitfähigkeit der Korkisolierung

Wärmeisolatoren - ParameterWärmeleitfähigkeit ist definiert als die Wärmemenge (in Watt), die aufgrund eines Temperaturunterschieds durch eine quadratische Materialfläche gegebener Dicke (in Metern) übertragen wird . Je niedriger die Wärmeleitfähigkeit des Materials ist, desto widerstandsfähiger ist das Material gegen Wärmeübertragung und desto wirksamer ist die Isolierung. Typische Wärmeleitfähigkeitswerte für Kork zwischen 0,035 und 0.043W / m ∙ K .

Im Allgemeinen beruht die Wärmedämmung in erster Linie auf der sehr geringen Wärmeleitfähigkeit von Gasen . Gase besitzen im Vergleich zu Flüssigkeiten und Feststoffen schlechte Wärmeleitungseigenschaften und sind daher ein gutes Isolationsmaterial, wenn sie eingeschlossen werden können (z. B. in einer schaumartigen Struktur). Luft und andere Gase sind im Allgemeinen gute Isolatoren. Der Hauptvorteil liegt jedoch in der Abwesenheit von Konvektion. Daher funktionieren viele Isoliermaterialien (z. B. Korkisolierung ) einfach dadurch, dass sie eine große Anzahl von gasgefüllten Taschen aufweisen, die eine Konvektion im großen Maßstab verhindern .

Der Wechsel von Gastasche und festem Material führt dazu, dass die Wärme über viele Grenzflächen übertragen werden muss, was zu einer raschen Abnahme des Wärmeübergangskoeffizienten führt.

Beispiel – Korkisolierung

Wärmeverlust durch Wand - Beispiel - BerechnungEine Hauptquelle für den Wärmeverlust eines Hauses sind Wände. Berechnen Sie die Wärmestromrate durch eine Wand mit einer Fläche von 3 mx 10 m (A = 30 m 2 ). Die Wand ist 15 cm dick (L 1 ) und besteht aus Ziegeln mit einer Wärmeleitfähigkeit von k 1 = 1,0 W / mK (schlechter Wärmeisolator). Angenommen, die Innen- und Außentemperaturen betragen 22 ° C und -8 ° C, und die Konvektionswärmeübertragungskoeffizienten an der Innen- und der Außenseite betragen h 1 = 10 W / m 2 K und h 2 = 30 W / m 2K jeweils. Beachten Sie, dass diese Konvektionskoeffizienten stark von den Umgebungs- und Innenbedingungen (Wind, Luftfeuchtigkeit usw.) abhängen.

  1. Berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese nicht isolierte Wand.
  2. Nehmen Sie nun die Wärmedämmung an der Außenseite dieser Wand an. Verwenden Sie 10 cm dicken Kork  (L 2 ) mit einer Wärmeleitfähigkeit von k 2 = 0,038 W / mK und berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese Verbundwand.

Lösung:

Wie bereits erwähnt, handelt es sich bei vielen Wärmeübertragungsprozessen um Verbundsysteme und sogar um eine Kombination aus Wärmeleitung und Konvektion . Bei diesen Verbundsystemen ist es häufig zweckmäßig, mit einem Gesamtwärmeübergangskoeffizienten zu arbeiten , der als U-Faktor bezeichnet wird . Der U-Faktor wird durch einen Ausdruck definiert, der dem Newtonschen Gesetz der Abkühlung entspricht :

U-Faktor - Gesamtwärmeübergangskoeffizient

Der Gesamtwärmeübertragungskoeffizient ist mit dem im Zusammenhang Gesamtwärmewiderstand und ist abhängig von der Geometrie des Problems.

  1. nackte Wand

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Wand und ohne Berücksichtigung der Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Wärmeverlustberechnung

Der Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 3,53 [W / m 2 K] × 30 [K] = 105,9 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 105,9 [W / m 2 ] × 30 [m 2 ] = 3177 W

  1. Verbundwand mit Wärmedämmung

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Verbundwand, ohne Wärmekontaktwiderstand und ohne Berücksichtigung von Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Berechnung der Wärmedämmung

KorkisolierungDer Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 0,1 / 0,038 + 1/30) = 0,343 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 0,343 [W / m 2 K] × 30 [K] = 10,29 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 10,29 [W / m 2 ] × 30 [m 2 ] = 308 W

Wie zu sehen ist, bewirkt eine Zugabe eines Wärmeisolators eine signifikante Verringerung der Wärmeverluste. Es muss hinzugefügt werden, ein Hinzufügen der nächsten Schicht Wärmeisolator führt nicht zu so hohen Einsparungen. Dies ist am Wärmewiderstand besser zu erkennen, mit dem der Wärmeübergang durch Verbundwände berechnet werden kann . Die Geschwindigkeit der gleichmäßigen Wärmeübertragung zwischen zwei Oberflächen ist gleich der Temperaturdifferenz geteilt durch den gesamten Wärmewiderstand zwischen diesen beiden Oberflächen.

Wärmewiderstand - Gleichung

 

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.

Das Beispiel – Berechnung der Zellulosedämmung – Definition

Beispiel – Berechnung der Zellulosedämmung. Berechnen Sie den Wärmefluss (Wärmeverlust) durch die isolierte Wand. Verwenden Sie eine 10 cm dicke Zellulosedämmung. Vergleichen Sie es mit einer bloßen Wand. Wärmetechnik

Beispiel – Zellulosedämmung

Wärmeverlust durch Wand - Beispiel - BerechnungEine Hauptquelle für den Wärmeverlust eines Hauses sind Wände. Berechnen Sie die Wärmestromrate durch eine Wand mit einer Fläche von 3 mx 10 m (A = 30 m 2 ). Die Wand ist 15 cm dick (L 1 ) und besteht aus Ziegeln mit einer Wärmeleitfähigkeit von k 1 = 1,0 W / mK (schlechter Wärmeisolator). Angenommen, die Innen- und Außentemperaturen betragen 22 ° C und -8 ° C, und die Konvektionswärmeübertragungskoeffizienten an der Innen- und der Außenseite betragen h 1 = 10 W / m 2 K und h 2 = 30 W / m 2K jeweils. Beachten Sie, dass diese Konvektionskoeffizienten stark von den Umgebungs- und Innenbedingungen (Wind, Luftfeuchtigkeit usw.) abhängen.

  1. Berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese nicht isolierte Wand.
  2. Nehmen Sie nun die Wärmedämmung an der Außenseite dieser Wand an. Verwenden Sie eine 10 cm dicke Zellulosedämmung (L 2 ) mit einer Wärmeleitfähigkeit von k 2 = 0,04 W / mK und berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese Verbundwand.

Lösung:

Wie bereits erwähnt, beinhalten viele der Wärmeübertragungsprozesse Verbundsysteme und sogar eine Kombination aus Wärmeleitung und Konvektion . Bei diesen Verbundsystemen ist es häufig zweckmäßig, mit einem Gesamtwärmeübergangskoeffizienten zu arbeiten , der als U-Faktor bezeichnet wird . Der U-Faktor wird durch einen Ausdruck definiert, der dem Newtonschen Gesetz der Abkühlung entspricht :

U-Faktor - Gesamtwärmeübergangskoeffizient

Der Gesamtwärmeübertragungskoeffizient ist , bezogen auf den Gesamtwärmewiderstand und ist abhängig von der Geometrie des Problems.

  1. nackte Wand

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Wand und ohne Berücksichtigung der Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Wärmeverlustberechnung

Der Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 3,53 [W / m 2 K] × 30 [K] = 105,9 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 105,9 [W / m 2 ] × 30 [m 2 ] = 3177 W

  1. Verbundwand mit Wärmedämmung

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Verbundwand, ohne Wärmekontaktwiderstand und ohne Berücksichtigung von Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Berechnung der Wärmedämmung

ZellulosedämmungDer Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 0,1 / 0,040 + 1/30) = 0,359 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 0,359 [W / m 2 K] × 30 [K] = 10,78 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 10,78 [W / m 2 ] × 30 [m 2 ] = 323 W

Wie zu sehen ist, bewirkt eine Zugabe eines Wärmeisolators eine signifikante Verringerung der Wärmeverluste. Es muss hinzugefügt werden, ein Hinzufügen der nächsten Schicht Wärmeisolator führt nicht zu so hohen Einsparungen. Dies ist am Wärmewiderstand besser zu erkennen, mit dem der Wärmeübergang durch Verbundwände berechnet werden kann . Die Geschwindigkeit der gleichmäßigen Wärmeübertragung zwischen zwei Oberflächen ist gleich der Temperaturdifferenz geteilt durch den gesamten Wärmewiderstand zwischen diesen beiden Oberflächen.

Wärmewiderstand - Gleichung

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.

Was ist Wärmeleitfähigkeit von Zellulosedämmung – Definition

Wärmeleitfähigkeit der Zellulosedämmung. Typische Wärmeleitfähigkeitswerte für die Zellulosedämmung liegen zwischen 0,035 und 0,040 W / m m K. Wärmetechnik

Wärmeleitfähigkeit der Zellulose-Isolierung

Wärmeisolatoren - ParameterWärmeleitfähigkeit ist definiert als die Wärmemenge (in Watt), die aufgrund eines Temperaturunterschieds durch eine quadratische Materialfläche gegebener Dicke (in Metern) übertragen wird . Je niedriger die Wärmeleitfähigkeit des Materials ist, desto widerstandsfähiger ist das Material gegen Wärmeübertragung und desto wirksamer ist die Isolierung. Typische Wärmeleitfähigkeitswerte für Zelluloseisolierung  zwischen 0,035 und 0.040W / m ∙ K .

Im Allgemeinen beruht die Wärmedämmung in erster Linie auf der sehr geringen Wärmeleitfähigkeit von Gasen . Gase weisen im Vergleich zu Flüssigkeiten und Feststoffen schlechte Wärmeleitungseigenschaften auf und sind daher ein gutes Isolationsmaterial, wenn sie eingeschlossen werden können (z. B. in einer schaumartigen Struktur). Luft und andere Gase sind im Allgemeinen gute Isolatoren. Der Hauptvorteil liegt jedoch in der Abwesenheit von Konvektion. Daher funktionieren viele Isoliermaterialien (z. B. Zellulosedämmung ) einfach dadurch, dass sie eine große Anzahl gasgefüllter Taschen aufweisen, die eine großflächige Konvektion verhindern .

Der Wechsel von Gastasche und festem Material führt dazu, dass die Wärme über viele Grenzflächen übertragen werden muss, was zu einer raschen Abnahme des Wärmeübertragungskoeffizienten führt.

 

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.

Was ist Hohlwanddämmung – Definition

Die Hohlwanddämmung ist eine Wärmedämmungsmethode, mit der Wärmeverluste durch eine Hohlwand verringert werden, indem der Luftraum mit einem Wärmeisolator gefüllt wird. Wärmetechnik

Hohlwanddämmung

Die Hohlwanddämmung ist eine Wärmedämmungsmethode, mit der Wärmeverluste durch eine Hohlwand verringert werden, indem der Luftraum mit einem Wärmeisolator gefüllt wird. Diese Materialien (z. B. Polyurethan ) funktionieren einfach, indem sie eine große Anzahl gasgefüllter Taschen aufweisen, die eine Konvektion in großem Maßstab verhindern . Der Wechsel von Gastasche und festem Material führt dazu, dass die Wärme über viele Grenzflächen übertragen werden muss, was zu einer raschen Abnahme des Wärmeübertragungskoeffizienten führt.

Während des Baus neuer Gebäude werden Hohlräume häufig mit Glaswolle- oder Steinwolleplatten gefüllt, die zwischen den zwei Blättern (Seiten) der Wand angeordnet sind. Polyurethanschaum (PUR) ist ein geschlossenzelliges duroplastisches Polymer. Die Polyurethanschaumisolierung ist in geschlossenzelligen und offenzelligen Formeln erhältlich. Polyurethanschaum kann als Hohlwanddämmung oder als Dachdämmung, Fußbodendämmung, Rohrdämmung, Dämmung von Industrieanlagen eingesetzt werden. Dämmplatten aus PUR können auf alle Elemente der Gebäudehülle aufgebracht werden. Ein weiterer wichtiger Aspekt ist, dass PUR unter Verwendung der vorhandenen Öffnungen und einiger zusätzlicher Löcher auch in vorhandene Hohlwände injiziert werden kann.

Bei bestehenden Gebäuden, die nicht mit isolierten Hohlräumen gebaut wurden, wird ein Fasermaterial wie Zellulosedämmung oder Glaswolle durch geeignet gebohrte Löcher in den Hohlraum geblasen, bis es den gesamten Wandraum ausfüllt. Lose Dämmung besteht aus kleinen Partikeln aus Fasern, Schaum oder anderen Materialien. Die gebräuchlichsten Arten von Materialien, die für lose Dämmungen verwendet werden, sind Zellulose , Glaswolle und Steinwolle .

Eingeblasene und lose gefüllte Isolierung

Schüttgüter können in Dachböden und fertige Wandhohlräume eingeblasen werden . Bei bestehenden Gebäuden, die nicht mit isolierten Hohlräumen gebaut wurden, wird ein Fasermaterial wie Zellulosedämmung oder Glaswolle durch geeignet gebohrte Löcher in den Hohlraum geblasen, bis es den gesamten Wandraum ausfüllt. Lose Dämmung besteht aus kleinen Partikeln aus Fasern, Schaum oder anderen Materialien. Die gebräuchlichsten Arten von Materialien, die für lose Dämmungen verwendet werden, sind Zellulose, Glaswolle und Steinwolle.

  • Die Zellulosedämmung wird aus Recyclingpapierprodukten, hauptsächlich Zeitungen, hergestellt und weist einen sehr hohen Anteil an Recyclingmaterial auf.
  • Glaswolle (ursprünglich auch als Glasfaser bekannt) ist ein Isoliermaterial aus Glasfasern, die mit einem Bindemittel zu einer wolleähnlichen Textur angeordnet sind.
  • Steinwolle , auch Steinwolle genannt, basiert auf natürlichen Mineralien, die in großen Mengen auf der Erde vorhanden sind, z. B. Vulkangestein, typischerweise Basalt oder Dolomit.

Diese kleinen Partikel aus diesen Materialien bilden ein Isolationsmaterial, das sich an jeden Raum anpassen kann, ohne Strukturen oder Oberflächen zu stören. Eine der Methoden ist die Wet-Spray-Zellulosedämmung. Diese Art der Dämmung ähnelt einer losen Dämmung, wird jedoch mit einer kleinen Menge Wasser aufgetragen, um die Zellulose an die Innenseite offener Wandhohlräume zu binden.

Isolationsbeispiel – Zellulosedämmung

Die Zellulosedämmung wird aus Recyclingpapierprodukten, hauptsächlich Zeitungen, hergestellt und weist einen sehr hohen Anteil an Recyclingmaterial auf. Die erhaltenen Cellulosefasern haben eine wollartige Struktur (daher Papierwolle). Um die Cellulosefasern feuchtigkeits- und flammhemmend zu machen, werden Borsäure oder Ammoniumsulfat zugesetzt. Zellulosedämmung wird in Wand- und Dachhohlräumen verwendet, um freie Geräusche zu isolieren, gegen Zugluft zu schützen und zu reduzieren. Zellulosedämmung wird sowohl in neuen als auch in bestehenden Häusern verwendet, normalerweise als lose Verfüllung in offenen Dachbodeninstallationen und dicht gepackt in Gebäudehohlräumen. Cellulose und die anderen Schüttgüter können in Dachböden, fertige Wandhohlräume und schwer zugängliche Bereiche eingeblasen werden.

Typische Wärmeleitfähigkeitswerte  für  Zelluloseisolierung  zwischen  0,022 und 0,035 W / m K ∙ .

Beispiel – Wärmeverlust durch eine Wand

Wärmeverlust durch Wand - Beispiel - BerechnungEine Hauptquelle für den Wärmeverlust eines Hauses sind Wände. Berechnen Sie die Wärmestromrate durch eine Wand mit einer Fläche von 3 mx 10 m (A = 30 m 2 ). Die Wand ist 15 cm dick (L 1 ) und besteht aus Ziegeln mit einer Wärmeleitfähigkeit von k 1 = 1,0 W / mK (schlechter Wärmeisolator). Angenommen, die Innen- und Außentemperaturen betragen 22 ° C und -8 ° C, und die Konvektionswärmeübertragungskoeffizienten an der Innen- und der Außenseite betragen h 1 = 10 W / m 2 K und h 2 = 30 W / m 2K jeweils. Beachten Sie, dass diese Konvektionskoeffizienten stark von den Umgebungs- und Innenbedingungen (Wind, Luftfeuchtigkeit usw.) abhängen.

  1. Berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese nicht isolierte Wand.
  2. Nehmen Sie nun die Wärmedämmung an der Außenseite dieser Wand an. Verwendung  Glaswolleisolierung 10 cm dick (L 2 ) mit der thermischen Leitfähigkeit von k 2 = 0,023 W / mK und den Wärmefluss (berechnen Wärmeverlust ) durch diese Verbundwand.

Lösung:

Wie bereits erwähnt, handelt es sich bei vielen Wärmeübertragungsprozessen um Verbundsysteme und sogar um eine Kombination aus Wärmeleitung und Konvektion . Bei diesen Verbundsystemen ist es häufig zweckmäßig, mit einem Gesamtwärmeübergangskoeffizienten zu arbeiten , der als U-Faktor bezeichnet wird . Der U-Faktor wird durch einen Ausdruck definiert, der dem Newtonschen Gesetz der Abkühlung entspricht :

U-Faktor - Gesamtwärmeübergangskoeffizient

Der Gesamtwärmeübertragungskoeffizient ist mit dem im Zusammenhang Gesamtwärmewiderstand und ist abhängig von der Geometrie des Problems.

  1. nackte Wand

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Wand und ohne Berücksichtigung der Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Wärmeverlustberechnung

Der Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 3,53 [W / m 2 K] × 30 [K] = 105,9 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 105,9 [W / m 2 ] × 30 [m 2 ] = 3177 W

  1. Verbundwand mit Wärmedämmung

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Verbundwand, ohne Wärmekontaktwiderstand und ohne Berücksichtigung von Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Berechnung der Wärmedämmung

Glaswolle-IsolierungDer Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 0,1 / 0,023 + 1/30) = 0,216 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 0,216 [W / m 2 K] × 30 [K] = 6,48 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 6,48 [W / m 2 ] × 30 [m 2 ] = 194 W

Wie zu sehen ist, bewirkt eine Zugabe eines Wärmeisolators eine signifikante Verringerung der Wärmeverluste. Es muss hinzugefügt werden, ein Hinzufügen der nächsten Schicht Wärmeisolator führt nicht zu so hohen Einsparungen. Dies ist am Wärmewiderstand besser zu erkennen, mit dem der Wärmeübergang durch Verbundwände berechnet werden kann . Die Geschwindigkeit der gleichmäßigen Wärmeübertragung zwischen zwei Oberflächen ist gleich der Temperaturdifferenz geteilt durch den gesamten Wärmewiderstand zwischen diesen beiden Oberflächen.

Wärmewiderstand - Gleichung

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.

Was ist Glasfaserisolierung – Definition

Die Glasfaserisolierung besteht aus extrem feinen Glasfasern. Es ist eines der am weitesten verbreiteten Dämmstoffe. Es wird üblicherweise in drei verschiedenen Isolationsarten verwendet.

Isolation aus Glaswolle

Die Glasfaserisolierung besteht aus extrem feinen Glasfasern. Es ist eines der am weitesten verbreiteten Dämmstoffe. Es wird üblicherweise in drei verschiedenen Isolationsarten verwendet:

  • Decke (Fledermäuse und Brötchen)
  • lose füllen
  • starre Bretter

Eingeblasene und lose gefüllte Isolierung

Schüttgüter können in Dachböden und fertige Wandhohlräume eingeblasen werden . Bei bestehenden Gebäuden, die nicht mit isolierten Hohlräumen gebaut wurden, wird ein Fasermaterial wie Zellulosedämmung oder Glaswolle durch geeignet gebohrte Löcher in den Hohlraum geblasen, bis es den gesamten Wandraum ausfüllt. Lose Dämmung besteht aus kleinen Partikeln aus Fasern, Schaum oder anderen Materialien. Die gebräuchlichsten Arten von Materialien, die für lose Dämmungen verwendet werden, sind Zellulose, Glaswolle und Steinwolle.

  • Die Zellulosedämmung wird aus Recyclingpapierprodukten, hauptsächlich Zeitungen, hergestellt und weist einen sehr hohen Anteil an Recyclingmaterial auf.
  • Glaswolle (ursprünglich auch als Glasfaser bekannt) ist ein Isoliermaterial aus Glasfasern, die mit einem Bindemittel zu einer wolleähnlichen Textur angeordnet sind.
  • Steinwolle , auch Steinwolle genannt, basiert auf natürlichen Mineralien, die in großen Mengen auf der Erde vorhanden sind, z. B. Vulkangestein, typischerweise Basalt oder Dolomit.

Diese kleinen Partikel aus diesen Materialien bilden ein Isolationsmaterial, das sich an jeden Raum anpassen kann, ohne Strukturen oder Oberflächen zu stören. Eine der Methoden ist die Wet-Spray-Zellulosedämmung. Diese Art der Dämmung ähnelt einer losen Dämmung, wird jedoch mit einer kleinen Menge Wasser aufgetragen, um die Zellulose an die Innenseite offener Wandhohlräume zu binden.

Beispiel der Isolierung – Glaswolle

Dach - Dachboden - Isolierung - GlaswolleGlaswolle  (ursprünglich auch als Glasfaser bekannt) ist ein Isoliermaterial aus  Glasfasern,  die mit einem Bindemittel zu einer wolleähnlichen Textur angeordnet sind. Glaswolle  und Steinwolle werden aus Mineralfasern hergestellt und werden daher häufig als „Mineralwolle“ bezeichnet. Mineralwolle ist eine allgemeine Bezeichnung für Fasermaterialien, die durch Spinnen oder Ziehen geschmolzener Mineralien entstehen. Glaswolleist ein Ofenprodukt aus geschmolzenem Glas bei einer Temperatur von etwa 1450 ° C. Aus dem geschmolzenen Glas werden Fasern gesponnen. Dieses Verfahren basiert auf dem Schleudern von geschmolzenem Glas in Hochgeschwindigkeitsspinnköpfen, ähnlich dem Verfahren zur Herstellung von Zuckerwatte. Während des Verspinnens der Glasfasern wird ein Bindemittel eingespritzt. Glaswolle wird dann in Rollen oder in Platten mit unterschiedlichen thermischen und mechanischen Eigenschaften hergestellt. Es kann auch als Material hergestellt werden, das auf die zu isolierende Oberfläche gesprüht oder an Ort und Stelle aufgebracht werden kann.

Zu den Anwendungen von Glaswolle gehören strukturelle Isolierung, Rohrisolierung, Filtration und Schallschutz. Glaswolle ist ein vielseitiges Material, das zur Isolierung von Wänden, Dächern und Böden verwendet werden kann. Es kann ein loses Füllmaterial sein, auf Dachböden geblasen oder zusammen mit einem aktiven Bindemittel auf die Unterseite von Strukturen gesprüht werden. Während des Einbaus der Glaswolle sollte diese stets trocken gehalten werden, da eine Erhöhung des Feuchtegehalts zu einer deutlichen Erhöhung der Wärmeleitfähigkeit führt.

Beispiel – Wärmeverlust durch eine Wand

Wärmeverlust durch Wand - Beispiel - BerechnungEine Hauptquelle für den Wärmeverlust eines Hauses sind Wände. Berechnen Sie die Wärmestromrate durch eine Wand mit einer Fläche von 3 mx 10 m (A = 30 m 2 ). Die Wand ist 15 cm dick (L 1 ) und besteht aus Ziegeln mit einer Wärmeleitfähigkeit von k 1 = 1,0 W / mK (schlechter Wärmeisolator). Angenommen, die Innen- und Außentemperaturen betragen 22 ° C und -8 ° C, und die Konvektionswärmeübertragungskoeffizienten an der Innen- und der Außenseite betragen h 1 = 10 W / m 2 K und h 2 = 30 W / m 2K jeweils. Beachten Sie, dass diese Konvektionskoeffizienten stark von den Umgebungs- und Innenbedingungen (Wind, Luftfeuchtigkeit usw.) abhängen.

  1. Berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese nicht isolierte Wand.
  2. Nehmen Sie nun die Wärmedämmung an der Außenseite dieser Wand an. Verwendung  Glaswolleisolierung 10 cm dick (L 2 ) mit der thermischen Leitfähigkeit von k 2 = 0,023 W / mK und den Wärmefluss (berechnen Wärmeverlust ) durch diese Verbundwand.

Lösung:

Wie bereits erwähnt, handelt es sich bei vielen Wärmeübertragungsprozessen um Verbundsysteme und sogar um eine Kombination aus Wärmeleitung und Konvektion . Bei diesen Verbundsystemen ist es häufig zweckmäßig, mit einem Gesamtwärmeübergangskoeffizienten zu arbeiten , der als U-Faktor bezeichnet wird . Der U-Faktor wird durch einen Ausdruck definiert, der dem Newtonschen Gesetz der Abkühlung entspricht :

U-Faktor - Gesamtwärmeübergangskoeffizient

Der Gesamtwärmeübertragungskoeffizient ist mit dem im Zusammenhang Gesamtwärmewiderstand und ist abhängig von der Geometrie des Problems.

  1. nackte Wand

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Wand und ohne Berücksichtigung der Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Wärmeverlustberechnung

Der Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 3,53 [W / m 2 K] × 30 [K] = 105,9 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 105,9 [W / m 2 ] × 30 [m 2 ] = 3177 W

  1. Verbundwand mit Wärmedämmung

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Verbundwand, ohne Wärmekontaktwiderstand und ohne Berücksichtigung von Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Berechnung der Wärmedämmung

Glaswolle-IsolierungDer Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 0,1 / 0,023 + 1/30) = 0,216 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 0,216 [W / m 2 K] × 30 [K] = 6,48 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 6,48 [W / m 2 ] × 30 [m 2 ] = 194 W

Wie zu sehen ist, bewirkt eine Zugabe eines Wärmeisolators eine signifikante Verringerung der Wärmeverluste. Es muss hinzugefügt werden, ein Hinzufügen der nächsten Schicht Wärmeisolator führt nicht zu so hohen Einsparungen. Dies ist am Wärmewiderstand besser zu erkennen, mit dem der Wärmeübergang durch Verbundwände berechnet werden kann . Die Geschwindigkeit der gleichmäßigen Wärmeübertragung zwischen zwei Oberflächen ist gleich der Temperaturdifferenz geteilt durch den gesamten Wärmewiderstand zwischen diesen beiden Oberflächen.

Wärmewiderstand - Gleichung

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.