Facebook Instagram Youtube Twitter

What is Advantage and Disadvantage of Small Modular Reactors – Definition

Advantages and Disadvantages of Small Modular Reactors. Small modular reactors are very specific. Their size and modularity offer many advantages. Thermal Engineering

Advantages and Disadvantages of Small Modular Reactors

Small modular reactors are very specific. Their size and modularity offer many advantages. On the other hand they have some disadvantages, which must be taken into account during decision making.

Possible Advantages

Enhanced safety and security

Lower thermal power of the reactor core, compact architecture and employment of passive concepts have the potential for enhanced safety and security compared to earlier designs and large commercial reactors. The passive safety systems are very important safety feature in the SMR. Therefore there is less reliance on active safety systems and additional pumps, as well as AC power for accident mitigation. These passive safety systems are able to dissipate heat even after loss of offsite power. The safety system incorporates an on-site water inventory which operates on natural forces (e.g. natural circulation). In reactor engineering, natural circulation is very desired phenomenon, since it is capable to provide reactor core cooling without coolant pumps, so that no moving parts could break down.


As was written, the term “modular” in the context of SMRs refers to its scalability and to the ability to fabricate major components of the nuclear steam supply system (NSSS) in a factory environment and then transported to the site. This can help limit the on-site preparation and also reduce the construction time. This is very important, since the lengthy construction times are one of key problems of the larger units. Moreover, the in-factory fabrication and completation of major parts of the nuclear steam supply system can also facilitate implementation of higher quality standards (e.g. inspections of welds).

Construction time and financing

Size, construction efficiency and passive safety systems (requiring less redundancy) can reduce a nuclear plant owner’s capital investment due to the lower plant capital cost. In-factory fabrication of major components of nuclear steam supply system can significantly reduce the on-site preparation and also reduce the construction time. This in turn can lead to easier financing compared to that for larger plants.

Possible Disadvantages

Large-scale Production

Most of the economic benefits (especially lower capital cost) stated are valid for n-th unit produced. In order to achieve these economic benefits, large-scale production of SMRs and initial orders for tens of units is required.


One of very important barriers is licensing of new reactor designs. For example, in regulating the design, siting, construction, and operation of new commercial nuclear power facilities, the NRC currently employs a combination of regulatory requirements, licensing, and oversight. Historically, the licensing process was developed for large commercial reactors. The licensing process for new reactor designs is a lengthy and costly process.

Reactor Physics and Thermal Hydraulics:
  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. Todreas Neil E., Kazimi Mujid S. Nuclear Systems Volume I: Thermal Hydraulic Fundamentals, Second Edition. CRC Press; 2 edition, 2012, ISBN: 978-0415802871
  6. Zohuri B., McDaniel P. Thermodynamics in Nuclear Power Plant Systems. Springer; 2015, ISBN: 978-3-319-13419-2
  7. Moran Michal J., Shapiro Howard N. Fundamentals of Engineering Thermodynamics, Fifth Edition, John Wiley & Sons, 2006, ISBN: 978-0-470-03037-0
  8. Kleinstreuer C. Modern Fluid Dynamics. Springer, 2010, ISBN 978-1-4020-8670-0.
  9. U.S. Department of Energy, THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW. DOE Fundamentals Handbook, Volume 1, 2 and 3. June 1992.

See also:

Type of Reactors

We hope, this article, Advantage and Disadvantage of Small Modular Reactors, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about thermal engineering.