Départ de Nucleate ébullition – DNB
Dans le cas des REP , le problème de sécurité critique est appelé DNB ( départ de l’ébullition nucléée ), ce qui provoque la formation d’une couche de vapeur locale , entraînant une réduction considérable de la capacité de transfert de chaleur. Ce phénomène se produit dans la région sous-refroidie ou de mauvaise qualité. Le comportement de la crise d’ébullition dépend de nombreuses conditions d’écoulement (pression, température, débit), mais la crise d’ébullition se produit à des flux de chaleur relativement importants et semble être associée au nuage de bulles, adjacent à la surface. Ces bulles ou pellicules de vapeur réduisent la quantité d’eau entrante. Ce phénomène détériorant le coefficient de transfert de chaleur et le flux de chaleur restant, la chaleur s’accumuledans la barre de combustible provoquant une augmentation spectaculaire de la gaine et de la température du carburant . Simplement, une très grande différence de température est nécessaire pour transférer le flux de chaleur critique produit de la surface de la barre de combustible vers le fluide de refroidissement du réacteur (à travers la couche de vapeur).
Dans le cas des REP, le flux critique est un flux annulaire inversé , tandis que dans les REB, le flux critique est généralement un flux annulaire. La différence de régime entre le débit post-assèchement et le flux post-DNB est illustrée dans la figure. Dans les REP en fonctionnement normal, le débit est considéré comme monophasé. Cependant, de nombreuses études ont été menées sur la nature des écoulements diphasiques en cas de transitoires et d’accidents (tels que les accidents de perte de caloporteur – LOCA ou déclenchement de RCP ), qui sont importants pour la sûreté des réacteurs et pour l’environnement. doit être prouvé et déclaré dans le rapport d’analyse de la sécurité (SAR).
Dans les réacteurs à eau sous pression, l’une des principales exigences de sécurité est qu’aucune dérogation à l’ébullition nucléée (DNB) ne se produira pas pendant le fonctionnement en régime permanent, les transitoires de fonctionnement normaux et les occurrences de fonctionnement prévues. L’intégrité de la gaine de combustible sera maintenue si le DNBR minimum reste au-dessus de la limite du DNBR 95/95 pour les REP (probabilité de 95% à un niveau de confiance de 95%). Le critère DNB est l’un des critères d’acceptation dans les analyses de sécurité et constitue l’une des limites de sécurité dans les spécifications techniques.
Une tâche importante de l’exploitant de la centrale est de contrôler les paramètres de la centrale de manière à maintenir une marge de sécurité jusqu’à DNB (ou la distance par rapport à DNB sur la courbe de transfert de chaleur). Toute modification soudaine et importante des paramètres / directions de l’installation suivants réduira la marge par rapport à DNB:
- Diminution de la pression du liquide de refroidissement du réacteur
- Diminution du débit de liquide de refroidissement du réacteur
- Augmentation de la puissance du réacteur
- Augmentation de la température d’entrée du liquide de refroidissement du réacteur
Par conséquent, la fonction des opérateurs et de la conception de l’installation est d’empêcher toute modification soudaine et importante de ces paramètres.
Flux thermique critique
Comme cela a été écrit, dans les réacteurs nucléaires , les limitations du flux de chaleur local sont de la plus haute importance pour la sûreté des réacteurs. Pour les réacteurs à eau sous pression et également pour les réacteurs à eau bouillante , il existe des phénomènes thermohydrauliques qui provoquent une baisse brutale de l’ efficacité du transfert de chaleur (plus précisément du coefficient de transfert de chaleur ). Ces phénomènes se produisent à une certaine valeur du flux de chaleur, connue sous le nom de « flux de chaleur critique ». Les phénomènes qui provoquent la détérioration du transfert de chaleur sont différents pour les REP et pour les REB.
Dans les deux types de réacteurs, le problème est plus ou moins associé au départ de l’ébullition nucléée. Le flux de chaleur d’ébullition nucléée ne peut pas être augmenté indéfiniment. À une certaine valeur, nous l’appelons le « flux de chaleur critique » ( CHF ), la vapeur produite peut former une couche isolante sur la surface, qui à son tour détériore le coefficient de transfert de chaleur. Immédiatement après que le flux de chaleur critique a été atteint, l’ébullition devient instable et l’ébullition en film se produit. La transition de l’ébullition nucléée à l’ébullition pelliculaire est connue sous le nom de « crise d’ébullition ». Comme cela a été écrit, les phénomènes qui provoquent la détérioration du transfert de chaleur sont différents pour les REP et pour les REB.
Flux thermique critique pour DNB – Corrélations
Comme cela a été écrit, la crise d’ébullition peut être classée comme un assèchement (sera décrit ci-dessous DNB) dans la région de haute qualité et s’écartant de l’ébullition nucléée (DNB) dans la région sous-refroidie ou de faible qualité (gamme de qualité approximative: de –5% à + 5%). Mais le flux thermique critique est utilisé pour les deux régimes.
DNB – Corrélation W-3
L’une des corrélations de conception les plus connues pour prédire le départ de l’ébullition nucléée est la corrélation W-3 développée à la Westinghouse Atomic Power Division par Tong . Elle est applicable aux flux sous-refroidis et de qualité faible à modérée.La corrélation W-3 est fonction de l’ enthalpie du liquide de refroidissement (saturé et à l’entrée), de la pression , de la qualité et du flux massique du liquide de refroidissement:
La corrélation W-3 concerne le flux de chaleur critique dans les canaux chauffés uniformément. Pour tenir compte des flux de chaleur non uniformes, Tong a introduit le facteur de correction, F.
Référence spéciale: Tong, LS, Weisman, Joel. Analyse thermique des réacteurs à eau sous pression. Amer Nuclear Society, 3e édition, 5/1996. ISBN-13: 978-0894480386.
Facteur de paroi froide – CWF
Tong, LS et Weisman, Joel introduit également un nouveau facteur connu sous le nom de « facteur de paroi froide », qui corrige la CHF dans un canal contenant une paroi non chauffée (par exemple, canal adjacent au tube de guidage de la tige de commande). Dans ces canaux, un film liquide s’accumule le long de la paroi froide et ce fluide n’est pas efficace pour refroidir la surface chauffée et le fluide refroidissant la surface chauffée est à une enthalpie plus élevée que celle calculée sans hypothèse de paroi froide. Notez que, il y a une hypothèse que la paroi froide détériore le transfert de chaleur par rapport au canal avec tous les côtés chauffés à la même enthalpie de sortie en vrac .
Tables de consultation CHF
Les tables de recherche CHF sont largement utilisées pour la prédiction du flux thermique critique (CHF). La table de conversion CHF est fondamentalement une banque de données normalisée pour un tube vertical de 8 mm refroidi par eau. La table de correspondance CHF 2006 est basée sur une base de données contenant plus de 30 000 points de données et couvre les plages de pression 0,1–21 Mpa, 0–8000 kg.m –2 .s -1 (le débit nul se réfère à l’ébullition de la piscine flux massique et –0,5 à 1 qualité de vapeur (les qualités négatives se réfèrent aux conditions de sous-refroidissement).
Référence spéciale: GROENEVELD, DC et al., The 2006 look-up table, Nuclear Engineering and Design 237 (2007), 1909–1922.
Écart par rapport au ratio d’ébullition nucléé – DNBR
Comme il a été écrit, dans le cas des REP , le problème de sécurité critique est nommé DNB ( départ de l’ébullition nucléée ), ce qui provoque la formation d’une couche de vapeur locale , entraînant une réduction spectaculaire de la capacité de transfert de chaleur. Il est à noter que, même pour les REB, qui ont un profil de puissance axiale nettement plus bas, le risque DNB doit être pris en compte.
Le DNB se produit lorsque le flux de chaleur local atteint la valeur du flux de chaleur critique. Ce phénomène se produit dans la région sous-refroidie ou de mauvaise qualité (gamme de qualité approximative: de –5% à + 5%). Le comportement de ce type de crise d’ébullition dépend de nombreuses conditions d’écoulement (pression, température, débit), car le flux thermique critique est généralement fonction de l’ enthalpie du fluide caloporteur (saturé et en entrée), de la pression , de la qualité et du flux massique du fluide caloporteur:
Ce type de crise d’ébullition se produit à des flux de chaleur relativement élevés et semble être associé au nuage de bulles, adjacent à la surface. Ces bulles ou film de vapeur réduisent la quantité d’eau entrante. Étant donné que ce phénomène détériore le coefficient de transfert de chaleur et que le flux de chaleur reste, la chaleur s’accumule alors dans le crayon de combustible provoquant une augmentation spectaculaire de la gaine et de la température du combustible . Simplement, une différence de température très élevée est nécessaire pour transférer le flux de chaleur critique produit de la surface du crayon de combustible au réfrigérant du réacteur (à travers la couche de vapeur). Dans le cas des REP, le flux critique est un flux annulaire inversé , tandis que dans les REP, le flux critique est généralement un flux annulaire.
Dans les réacteurs à eau sous pression, l’une des principales exigences de sécurité est qu’un écart par rapport à l’ébullition nucléée (DNB) ne se produira pas pendant le fonctionnement en régime permanent, les transitoires opérationnels normaux et les événements opérationnels prévus (AOO). L’intégrité de la gaine de combustible sera maintenue si le DNBR minimum reste supérieur à la limite DNBR 95/95 pour les REP (une probabilité de 95% à un niveau de confiance de 95%). Le critère DNB est l’un des critères d’acceptation dans les analyses de sécurité et il constitue l’une des limites de sécurité dans les spécifications techniques. Il va sans dire que l’établissement d’un rapport DNB minimal constitue une limitation majeure de la conception des réacteurs refroidis par eau. Ce phénomène limite la puissance thermique maximale de chaque PWR.
Le rapport DNB (DNBR – écart par rapport au rapport d’ébullition nucléé) est la mesure de la marge au flux de chaleur critique. DNBR est défini comme:
le flux de chaleur critique à un emplacement spécifique et les paramètres spécifiques du liquide de refroidissement divisés par le flux de chaleur local de fonctionnement à cet emplacement .
Le cœur du réacteur doit être conçu pour maintenir le DNBR plus grand que la valeur minimale autorisée (connue sous le nom de limite de corrélation) pendant le fonctionnement en régime permanent, les transitoires opérationnels normaux et les événements opérationnels prévus (AOO). Pour prédire l’écart par rapport à l’ébullition nucléée, le CHF peut, par exemple, être déterminé en utilisant la corrélation W-3 développée à la Westinghouse Atomic Power Division. Si ces corrélations étaient parfaites (sans incertitudes), le critère serait simple:
Le flux de chaleur local doit être inférieur au flux de chaleur critique (c’est-à-dire que le DNBR doit être supérieur à un).
Mais en réalité , aucune corrélation n’est parfaite et des incertitudes doivent être impliquées dans ce calcul. Ces bandes d’incertitude ou limites d’erreur établissent une valeur minimale acceptable pour le rapport DNB, qui peut être significativement supérieure à un comme indiqué sur la figure. Les incertitudes peuvent atteindre environ 20% et donc le DNBR doit être plus grand que, par exemple, DNBR lim = 1,2 .
Comme on peut le voir sur la figure, le CHF diminue considérablement avec l’augmentation de l’enthalpie du liquide de refroidissement, donc la valeur minimale de DNBR n’est pas nécessairement au centre du cœur. Le rapport DNB minimal (MDNBR) se produit à l’endroit où le flux de chaleur critique et le flux de chaleur de fonctionnement sont les plus proches et se trouvent généralement dans la partie supérieure du cœur. De plus, à l’entrée du canal où le sous-refroidissement du liquide de refroidissement est le plus élevé, nous nous attendons à ce que le flux de chaleur nécessaire pour que le DNB à cet endroit soit extrêmement élevé. En revanche, à la sortie du canal où l’enthalpie du liquide de refroidissement est la plus élevée, le flux de chaleur nécessaire pour provoquer le DNB devrait être à son plus bas.
Référence spéciale: Tong, LS, Weisman, Joel. Analyse thermique des réacteurs à eau sous pression. Amer Nuclear Society, 3e édition, 5/1996. ISBN-13: 978-0894480386.
Transfert de chaleur post-DNB
Le flux de chaleur d’ébullition nucléée ne peut pas être augmenté indéfiniment. À une certaine valeur, nous l’appelons le « flux de chaleur critique » ( CHF ), la vapeur produite peut former une couche isolante sur la surface, qui à son tour détériore le coefficient de transfert de chaleur. En effet, une grande partie de la surface est recouverte d’un film de vapeur, qui agit comme une isolation thermique en raison de la faible conductivité thermique de la vapeur par rapport à celle du liquide. Immédiatement après que le flux de chaleur critique a été atteint, l’ébullition devient instable et l’ébullition de transition se produit. La transition de l’ébullition nucléée à l’ébullition pelliculaire est connue comme la « crise de l’ébullition ». Étant donné qu’au-delà du point CHF, le coefficient de transfert de chaleur diminue, la transition vers l’ébullition du film est généralement inévitable.
Une nouvelle augmentation du flux de chaleur n’est pas nécessaire pour maintenir l’ébullition du film. Un film de vapeur recouvre entièrement la surface. Cela réduit considérablement le coefficient de convection, car la couche de vapeur a une capacité de transfert de chaleur nettement inférieure. En conséquence, la température excessive atteint une valeur très élevée. Au-delà du point Leidenfrost , un film de vapeur continu recouvre la surface et il n’y a aucun contact entre la phase liquide et la surface. Dans cette situation, le transfert de chaleur se fait à la fois par rayonnement et par conduction vers la vapeur. La surface chauffée stabilise stabilise sa température au point E (voir figure). Si le matériau n’est pas suffisamment solide pour résister à cette température, l’équipement tombera en panne en endommageant le matériau.
……………………………………………………………………………………………………………………………….
Cet article est basé sur la traduction automatique de l’article original en anglais. Pour plus d’informations, voir l’article en anglais. Pouvez vous nous aider Si vous souhaitez corriger la traduction, envoyez-la à l’adresse: translations@nuclear-power.com ou remplissez le formulaire de traduction en ligne. Nous apprécions votre aide, nous mettrons à jour la traduction le plus rapidement possible. Merci