Facebook Instagram Youtube Twitter

¿Qué es el parámetro y la operación del condensador principal? Definición

Parámetros y funcionamiento del condensador principal. El condensador debe mantener un vacío bajo suficiente para aumentar la eficiencia de la central eléctrica. Ingenieria termal

Parámetros del condensador principal

El condensador debe mantener un vacío bajo suficiente para aumentar la eficiencia de la central eléctrica. Las bombas de vacío mantienen un vacío suficiente en el condensador mediante la extracción de aire y gases no condensados. La presión de condensador más baja posible es la presión de saturación correspondiente a la temperatura ambiente (por ejemplo, presión absoluta de 0.008 MPa, que corresponde a 41.5 ° C ). Tenga en cuenta que siempre hay una diferencia de temperatura entre (alrededor de ΔT = 14 ° C) la temperatura del condensador y la temperatura ambiente, que se origina en el tamaño finito y la eficiencia de los condensadores. Como ninguno de los dos condensadores es un intercambiador de calor 100% eficiente, siempre hay una diferencia de temperatura entre la temperatura de saturación (lado secundario) y la temperatura del refrigerante en el sistema de enfriamiento. Además, existe una ineficiencia en el diseño, que disminuye la eficiencia general de la turbina. Idealmente, el vapor extraído al condensador no tendría subenfriamiento . Pero los condensadores reales están diseñados para subenfriar el líquido unos pocos grados centígrados para evitar la cavitación por succión en las bombas de condensado. Pero, este subenfriamiento aumenta la ineficiencia del ciclo, porque se necesita más energía para recalentar el agua.

Ciclo Rankine - presión del condensador
La disminución de la presión de escape de la turbina aumenta el trabajo neto por ciclo, pero también disminuye la calidad del vapor del vapor de salida.

El objetivo de mantener la presión de escape de turbina práctica más baja es una razón principal para incluir el condensador en una central térmica. El condensador proporciona un vacío que maximiza la energía extraída del vapor, lo que resulta en un aumento significativo en el trabajo neto y la eficiencia térmica. Pero también este parámetro (presión del condensador) tiene sus límites de ingeniería:

  • Disminuir la presión de escape de la turbina disminuye la calidad del vapor (o fracción de sequedad). En algún momento, se debe finalizar la expansión para evitar daños que puedan ser causados ​​a las aspas de la turbina de vapor por vapor de baja calidad .
  • Disminuir la presión de escape de la turbina aumenta significativamente el volumen específico de vapor extraído, lo que requiere palas enormes en las últimas filas de la etapa de baja presión de la turbina de vapor.

En una turbina de vapor húmedo típica , el vapor agotado se condensa en el condensador y está a una presión muy por debajo de la atmosférica (presión absoluta de 0.008 MPa, que corresponde a 41.5 ° C). Este vapor está en un estado parcialmente condensado (punto F), típicamente de una calidad cercana al 90%. Tenga en cuenta que la presión dentro del condensador también depende de las condiciones atmosféricas ambientales:

  • temperatura del aire, presión y humedad en caso de enfriamiento a la atmósfera
  • temperatura del agua y caudal en caso de enfriamiento en un río o mar

Un aumento en la temperatura ambiente provoca un aumento proporcional en la presión del vapor agotado ( ΔT = 14 ° C suele ser una constante), por lo tanto, la eficiencia térmica del sistema de conversión de energía disminuye. En otras palabras, la salida eléctrica de una planta de energía puede variar con las condiciones ambientales , mientras que la energía térmica permanece constante.

Para mantener los parámetros dentro del condensador (0.008 MPa y 41.5 ° C), el agua  de enfriamiento del sistema de enfriamiento debe estar suficientemente fría y no puede haber una gran diferencia de temperatura entre la temperatura del agua de salida y la de entrada, por lo tanto, el caudal a través del sistema de enfriamiento debe ser muy alto. El caudal a través del sistema de enfriamiento (con torres de enfriamiento húmedo) puede ser de hasta 100 000 m3 / h (27.7 m / s). El agua de entrada al condensador puede tener aproximadamente 22 ° C (fuertemente dependiendo de las condiciones ambientales), mientras que la salida del condensador puede tener aproximadamente 25 ° C . Los sistemas de enfriamiento de agua de mar funcionan a caudales más altos, por ejemplo, 130 000 m 3 / h .

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.