Ébullition saturée – ébullition en vrac
En ébullition saturée (aussi appelée ébullition en masse ), la température du liquide dépasse légèrement la température de saturation. Une ébullition en masse peut se produire lorsque la température du système augmente ou lorsque la pression du système chute au point d’ébullition. À ce stade, les bulles entrant dans le canal de liquide de refroidissement ne s’effondreront pas. Les bulles auront tendance à se rejoindre et à former de plus grosses bulles de vapeur. Les bulles de vapeur sont ensuite propulsées dans le liquide par les forces de la flottabilité, pour éventuellement s’échapper d’une surface libre.
Ébullition en vrac dans les REB
Dans les REB, l’ ébullition du liquide de refroidissement se produit en fonctionnement normal et c’est un phénomène très souhaité. Les qualités d’écoulement typiques dans les noyaux BWR sont de l’ordre de 10 à 20%. Un réacteur à eau bouillante est refroidi et modéré par de l’eau comme un PWR, mais à une pression inférieure (7 MPa), ce qui permet à l’eau de bouillir à l’intérieur de l’ enceinte sous pression produisant la vapeur qui fait fonctionner les turbines. L’évaporation se produit donc directement dans les canaux de combustible. Par conséquent, les REB sont le meilleur exemple pour cette zone, car l’évaporation du liquide de refroidissement se produit en fonctionnement normal et c’est un phénomène très souhaité.
Dans les REB, il existe un phénomène de la plus haute importance pour la sûreté des réacteurs . Ce phénomène est connu sous le nom de «tarissement» et il est directement associé aux changements dans le schéma d’écoulement lors de l’évaporation dans la région de haute qualité. À la normale, la surface du carburant est efficacement refroidie par ébullition du liquide de refroidissement. Cependant, lorsque le flux de chaleur dépasse une valeur critique (CHF – flux de chaleur critique), le schéma d’écoulement peut atteindre les conditions de séchage (une mince couche de liquide disparaît). Le transfert de chaleur de la surface du carburant vers le liquide de refroidissement est détérioré, avec pour résultat une température de surface du carburant considérablement augmentée .
Ébullition en vrac dans les REP
Pour les REP en fonctionnement normal, il y a une eau liquide comprimée à l’ intérieur du cœur du réacteur, des boucles et des générateurs de vapeur. La pression est maintenue à environ 16 MPa . À cette pression, l’eau bout à environ 350 ° C (662 ° F), ce qui donne une marge de sous-refroidissement (la différence entre la température du pressuriseur et la température de sortie du réfrigérant dans le cœur du réacteur) de 30 ° C. Il convient de noter que cette marge de sous-refroidissement concerne la température en vrac, car l’ébullition en vrac est en tout cas interdite.
La marge de sous-refroidissement est un paramètre de sécurité très important des REP, car l’ébullition en vrac dans le cœur du réacteur doit être exclue. La conception de base du réacteur à eau sous pression comprend une telle exigence que le liquide de refroidissement (eau) dans le système de refroidissement du réacteur ne doit pas bouillir. Pour ce faire, le liquide de refroidissement dans le système de refroidissement du réacteur est maintenu à une pression suffisamment élevée pour que l’ébullition ne se produise pas aux températures de refroidissement rencontrées pendant le fonctionnement de l’installation ou dans un transitoire analysé.
Comme cela a été calculé dans l’exemple , la température de surface T Zr, 1 = 325 ° C garantit que même une ébullition sous-refroidie ne se produit pas. Notez que l’ébullition sous-refroidie nécessite T Zr, 1 = T sat . Étant donné que les températures d’entrée de l’eau sont généralement d’environ 290 ° C (554 ° F), il est évident que cet exemple correspond à la partie inférieure du cœur. Aux altitudes plus élevées du cœur, la température globale peut atteindre jusqu’à 330 ° C. La différence de température de 29 ° C peut entraîner une ébullition de surface sous – refroidie (330 ° C + 29 ° C> 350 ° C). D’autre part, l’ ébullition nuclééeà la surface perturbe efficacement la couche stagnante et, par conséquent, l’ébullition nucléée augmente considérablement la capacité d’une surface à transférer l’ énergie thermique au fluide en vrac. En conséquence, le coefficient de transfert de chaleur convectif augmente considérablement et donc à des altitudes plus élevées, la différence de température (T Zr, 1 – T en vrac ) diminue considérablement.
Nucleate Boiling – Flow Boiling
En ébullition (ou ébullition par convection forcée ), l’écoulement de fluide est forcé sur une surface par des moyens externes tels qu’une pompe, ainsi que par des effets de flottabilité. Par conséquent, l’ébullition du flux s’accompagne toujours d’autres effets de convection. Les conditions dépendent fortement de la géométrie, ce qui peut impliquer un écoulement externe sur des plaques et des cylindres chauffés ou un écoulement interne (conduit). Dans les réacteurs nucléaires, la plupart des régimes d’ébullition sont simplement des ébullitions à convection forcée. Le point d’ébullition est également classé comme point d’ébullition externe et interne selon que le fluide est forcé de s’écouler sur une surface chauffée ou à l’intérieur d’un canal chauffé.
L’ébullition à écoulement interne est de nature beaucoup plus compliquée que l’ébullition à écoulement externe car il n’y a pas de surface libre pour que la vapeur s’échappe, et donc le liquide et la vapeur sont forcés de s’écouler ensemble. L’écoulement diphasique dans un tube présente différents régimes d’ébullition, en fonction des quantités relatives des phases liquide et vapeur. Par conséquent, l’ébullition par convection forcée interne est communément appelée écoulement diphasique .
Nucleate Boiling Correlations – Flow Boiling
Corrélation McAdams
Dans une ébullition nucléée entièrement développée avec un liquide de refroidissement saturé, la température de la paroi est déterminée par le flux de chaleur local et la pression et ne dépend que légèrement du nombre de Reynolds . Pour l’eau sous-refroidie à des pressions absolues comprises entre 0,1 et 0,6 MPa, la corrélation McAdams donne:
Corrélation de Thom
La corrélation de Thom concerne le débit d’ébullition (sous-refroidi ou saturé à des pressions allant jusqu’à environ 20 MPa) dans des conditions où la contribution d’ébullition nucléée prédomine sur la convection forcée. Cette corrélation est utile pour une estimation grossière de la différence de température attendue compte tenu du flux de chaleur:
Corrélation de Chen
En 1963, Chen a proposé la première corrélation d’ébullition pour l’évaporation dans des tubes verticaux pour atteindre une utilisation généralisée. La corrélation de Chen inclut à la fois les coefficients de transfert de chaleur dus à l’ ébullition nucléée ainsi que les mécanismes de convection forcée. Il faut noter qu’à des fractions de vapeur plus élevées, le coefficient de transfert de chaleur varie fortement avec le débit. La vitesse d’écoulement dans un cœur peut être très élevée provoquant de très fortes turbulences. Ce mécanisme de transfert de chaleur a été appelé «évaporation par convection forcée». Aucun critère adéquat n’a été établi pour déterminer la transition de l’ébullition nucléée à la vaporisation par convection forcée. Cependant, une seule corrélation valable à la fois pour l’ébullition nucléée et la vaporisation par convection forcée a été développée par Chen pour les conditions d’ébullition saturées et étendue pour inclure l’ébullition sous-refroidie par d’autres. Chen a proposé une corrélation où le coefficient de transfert de chaleur est la somme d’une composante de convection forcée et d’une ébullition nuclééecomposant. Il faut noter que la corrélation d’ébullition de la piscine nucléée de Forster et Zuber (1955) est utilisée pour calculer le coefficient de transfert de chaleur d’ébullition nucléée, h FZ et la corrélation d’écoulement turbulent de Dittus-Boelter (1930) est utilisée pour calculer la phase liquide coefficient de transfert de chaleur par convection, h l .
Le facteur de suppression de l’ébullition nucléée, S, est le rapport de la surchauffe effective à la surchauffe de la paroi. Il explique la diminution du transfert de chaleur d’ébullition car la surchauffe effective à travers la couche limite est inférieure à la surchauffe en fonction de la température de la paroi. Le multiplicateur diphasique, F, est fonction du paramètre Martinelli χ tt .
……………………………………………………………………………………………………………………………….
Cet article est basé sur la traduction automatique de l’article original en anglais. Pour plus d’informations, voir l’article en anglais. Pouvez vous nous aider Si vous souhaitez corriger la traduction, envoyez-la à l’adresse: translations@nuclear-power.com ou remplissez le formulaire de traduction en ligne. Nous apprécions votre aide, nous mettrons à jour la traduction le plus rapidement possible. Merci