# What is SI Unit of Pressure – Definition

SI Unit of Pressure – Pascal – kg/m.s2 – N/m2. The SI unit of pressure and stress is the pascal. A technical atmosphere is a non-SI unit of pressure equal to one kilogram-force per square centimeter. Thermal Engineering

## What is Pressure

Pressure is a measure of the force exerted per unit area on the boundaries of a substance. The standard unit for pressure in the SI system is the Newton per square meter or pascal (Pa). Mathematically:

p = F/A

where

• p is the pressure
• F is the normal force
• A is the area of the boundary

Pascal is defined as force of 1N that is exerted on unit area.

• 1 Pascal = 1 N/m2
However, for most engineering problems it is fairly small unit, so it is convenient to work with multiples of the pascal: the kPa, the bar, and the MPa.
• 1 MPa  106 N/m2
• 1 bar    105 N/m2
• 1 kPa   103 N/m2

In general, pressure or the force exerted per unit area on the boundaries of a substance is caused by the collisions of the molecules of the substance with the boundaries of the system. As molecules hit the walls, they exert forces that try to push the walls outward. The forces resulting from all of these collisions cause the pressure exerted by a system on its surroundings. Pressure as an intensive variable is constant in a closed system. It really is only relevant in liquid or gaseous systems.

[xyz-ihs snippet=”pressure”]

## Pascal – Unit of Pressure

As was discussed, the SI unit of pressure and stress is the pascal.

• 1 pascal  1 N/m2 = 1 kg / (m.s2)

Pascal is defined as one newton per square metre. However, for most engineering problems it is fairly small unit, so it is convenient to work with multiples of the pascal: the kPa, the bar, and the MPa.

• 1 MPa  106 N/m2
• 1 bar    105 N/m2
• 1 kPa   103 N/m2

The unit of measurement called standard atmosphere (atm) is defined as:

• 1 atm = 101.33 kPa

The standard atmosphere approximates to the average pressure at sea-level at the latitude 45° N. Note that, there is a difference between the standard atmosphere (atm) and the technical atmosphere (at).

A technical atmosphere is a non-SI unit of pressure equal to one kilogram-force per square centimeter.

• 1 at = 98.67 kPa

References:
Reactor Physics and Thermal Hydraulics:
1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
5. Todreas Neil E., Kazimi Mujid S. Nuclear Systems Volume I: Thermal Hydraulic Fundamentals, Second Edition. CRC Press; 2 edition, 2012, ISBN: 978-0415802871
6. Zohuri B., McDaniel P. Thermodynamics in Nuclear Power Plant Systems. Springer; 2015, ISBN: 978-3-319-13419-2
7. Moran Michal J., Shapiro Howard N. Fundamentals of Engineering Thermodynamics, Fifth Edition, John Wiley & Sons, 2006, ISBN: 978-0-470-03037-0
8. Kleinstreuer C. Modern Fluid Dynamics. Springer, 2010, ISBN 978-1-4020-8670-0.
9. U.S. Department of Energy, THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW. DOE Fundamentals Handbook, Volume 1, 2 and 3. June 1992.