Facebook Instagram Youtube Twitter

Qué es el cambio de entalpía – delta h – Definición

La entalpía está representada por el símbolo H, y el cambio en la entalpía en un proceso (delta h) es H2 – H1. Delta h se calcula aquí para varios ejemplos. Ingenieria termal

Entalpía en unidades extensas

Propiedades termodinámicas extensivas versus intensivas
Propiedades extensivas e intensivas del medio en el presurizador.

H = U + pV

La entalpía  es una cantidad extensa, depende del tamaño del sistema o de la cantidad de sustancia que contiene. La unidad de entalpía del SI es el joule (J). Es la energía contenida dentro del sistema, excluyendo la energía cinética de movimiento del sistema como un todo y la energía potencial del sistema como un todo debido a los campos de fuerza externos. Es la cantidad termodinámica equivalente al contenido de calor total de un sistema.

Por otro lado, la energía puede almacenarse en los enlaces químicos entre los átomos que forman las moléculas. Este almacenamiento de energía a nivel atómico incluye energía asociada con estados orbitales de electrones, espín nuclear y fuerzas de unión en el núcleo.

La entalpía está representada por el símbolo H , y el cambio en la entalpía (delta H) en un proceso es 2 – H 1 .

Hay expresiones en términos de variables más familiares como temperatura y presión :

dH = C p dT + V (1-αT) dp

Donde p es la capacidad calorífica a presión constante y α es el coeficiente de expansión térmica (cúbica). Para gas ideal αT = 1 y por lo tanto:

dH = C p dT

Ejemplo: Pistón sin fricción – Calor – Entalpía

Entalpía - Ejemplo - Un pistón sin fricción
Calcule la temperatura final, si se agregan 3000 kJ de calor.

Un pistón sin fricción se utiliza para proporcionar una presión constante de 500 kPa en un cilindro que contiene vapor de agua ( vapor sobrecalentado ) de un volumen de 2 m 3  a 500 K . Calcule la temperatura final, si se agregan 3000 kJ de calor .

Solución:

Usando tablas de vapor , sabemos que la entalpía específica de dicho vapor (500 kPa; 500 K) es de aproximadamente 2912 kJ / kg . Como en esta condición el vapor tiene una densidad de 2.2 kg / m 3 , entonces sabemos que hay alrededor de 4.4 kg de vapor en el pistón a una entalpía de 2912 kJ / kg x 4.4 kg = 12812 kJ .

Cuando usamos simplemente Q = H 2 – H 1 , la entalpía de vapor resultante será:

2 = H 1 + Q = 15812 kJ

De las mesas de vapor , dicho vapor sobrecalentado (15812 / 4.4 = 3593 kJ / kg) tendrá una temperatura de 828 K (555 ° C) . Dado que en esta entalpía el vapor tiene una densidad de 1.31 kg / m 3 , es obvio que se ha expandido aproximadamente 2.2 / 1.31 = 1.67 (+ 67%). Por lo tanto, el volumen resultante es 2 m 3 x 1.67 = 3.34 m 3 y ∆V = 3.34 m 3 – 2 m 3 = 1.34 m 3 .

La parte p∆V de la entalpía, es decir, el trabajo realizado es:

W = p∆V = 500 000 Pa x 1.34 m 3 = 670 kJ

Entalpía en Unidades Intensivas – Entalpía Específica

La entalpía se puede convertir en una variable intensiva o específica dividiéndola por la masa . Los ingenieros usan la entalpía específica en el análisis termodinámico más que la entalpía misma. La entalpía específica (h) de una sustancia es su entalpía por unidad de masa. Es igual a la entalpía total (H) dividida por la masa total (m).

h = H / m

dónde:

h = entalpía específica (J / kg)

H = entalpía (J)

m = masa (kg)

Tenga en cuenta que la entalpía es la cantidad termodinámica equivalente al contenido total de calor de un sistema. La entalpía específica es igual a la energía interna específica del sistema más el producto de presión y volumen específico .

h = u + pv

En general, la entalpía es una propiedad de una sustancia , como la presión, la temperatura y el volumen, pero no se puede medir directamente. Normalmente, la entalpía de una sustancia se da con respecto a algún valor de referencia. Por ejemplo, la entalpía específica de agua o vapor se da usando la referencia de que la entalpía específica de agua es cero a 0.01 ° C y presión atmosférica normal , donde L = 0.00 kJ / kg . Sin embargo, el hecho de que se desconozca el valor absoluto de la entalpía específica no es un problema, porque es el cambio en la entalpía específica (∆h) y no el valor absoluto lo que es importante en los problemas prácticos.

 

Cambios de entalpía en reacciones químicas

Combustión de Hidrógeno
En una llama de hidrógeno puro, que se quema en el aire, el hidrógeno (H2) reacciona con el oxígeno (O2) para formar agua (H2O) y libera energía.

Considere la combustión de hidrógeno en el aire. En una llama de hidrógeno puro, que se quema en el aire, el hidrógeno (H 2 ) reacciona con el  oxígeno (O 2 ) para formar agua (H 2 O) y libera energía .

Energéticamente, el proceso se puede considerar para requerir la energía para disociar el 2  y 2 , pero entonces la unión de las H 2 O devuelve el sistema a un estado ligado con potencial negativo . En realidad, es más negativo que los estados unidos de los reactivos, y la formación de las dos moléculas de agua es, por lo tanto, una reacción exotérmica , que libera 5,7 eV de energía. En palabras de entalpía, la entalpía de combustión es −286 kJ / mol:

2H 2 (g) + O 2 (g) → 2H 2 O (g)

En palabras de entalpía, la entalpía de combustión es −286 kJ / mol (energía por mol de hidrógeno molecular):

2H 2 (g) + O 2 (g) → 2H 2 O (l) +572 kJ

El equilibrio de energía antes y después de la reacción se puede ilustrar esquemáticamente con el estado en el que todos los átomos se toman libremente como referencia para la energía.

Entalpía de vaporización

Calor latente de vaporización: agua a 0.1 MPa, 3 MPa, 16 MPa
El calor de vaporización disminuye al aumentar la presión, mientras que aumenta el punto de ebullición. Se desvanece por completo en un cierto punto llamado punto crítico.

En general, cuando un material cambia de fase de sólido a líquido, o de líquido a gas, una cierta cantidad de energía está involucrada en este cambio de fase. En caso de cambio de fase de líquido a gas, esta cantidad de energía se conoce como entalpía de vaporización , (símbolo ∆H vap ; unidad: J) también conocido como calor (latente) de vaporización o calor de evaporación. El calor latente es la cantidad de calor agregado o eliminado de una sustancia para producir un cambio de fase. Esta energía descompone las fuerzas de atracción intermoleculares, y también debe proporcionar la energía necesaria para expandir el gas (el trabajo pΔV) Cuando se agrega calor latente, no ocurre cambio de temperatura. La entalpía de la vaporización es una función de la presión a la que tiene lugar esa transformación.

Calor latente de vaporización – agua a 0.1 MPa (presión atmosférica)

lg = 2257 kJ / kg

Calor latente de vaporización: agua a 3 MPa (presión dentro de un generador de vapor)

lg = 1795 kJ / kg

Calor latente de vaporización: agua a 16 MPa (presión dentro de un presurizador )

lg = 931 kJ / kg

El calor de vaporización disminuye al aumentar la presión, mientras que aumenta el punto de ebullición . Se desvanece por completo en un cierto punto llamado punto crítico . Por encima del punto crítico, las fases líquida y de vapor son indistinguibles, y la sustancia se llama fluido supercrítico .

El calor de vaporización es el calor requerido para vaporizar completamente una unidad de líquido saturado (o condensar una unidad de masa de vapor saturado) y es igual a lg = h g – h l .

El calor necesario para derretir (o congelar) una unidad de masa en la sustancia a presión constante es el calor de fusión y es igual a sl = h l – h s , donde h s es la entalpía del sólido saturado y h l Es la entalpía del líquido saturado.

Cambios de fase - entalpía de vaporización
Calor latente de vaporización – agua a 0.1 MPa. Parte dominante del calor absorbido.
……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.