Facebook Instagram Youtube Twitter

Qué es el generador de turbina – Sistema de conversión de energía – Definición

El dispositivo clave del sistema de conversión de energía es el generador de turbina. El generador de turbina está en el edificio de la turbina y contiene la mayoría de los componentes principales del ciclo termodinámico. Ingenieria termal

Generador de turbina – Sistema de conversión de energía

El diseño de plantas de energía nuclear comprende dos partes principales: La isla nuclear y la isla convencional (turbina) . La isla nuclear es el corazón de la central nuclear. Por otro lado, la isla convencional (turbina) alberga el componente clave que extrae energía térmica del vapor presurizado y la convierte en energía eléctrica, el generador de turbina . Por lo tanto, también se conoce como el sistema de conversión de energía . El dispositivo clave del sistema de conversión de energía es el generador de turbina. El generador de turbina está en el edificio de la turbina y contiene la mayoría de los componentes principales del ciclo termodinámico. Solo elLos generadores de vapor están situados en el edificio del reactor (la isla nuclear).

Tenga en cuenta que estamos describiendo el sistema de conversión de energía de un reactor de agua a presión (PWR). Un reactor de agua hirviendo (BWR) es como un reactor de agua a presión pero con muchas diferencias. Los BWR no tienen ningún generador de vapor . A diferencia de un PWR, no hay un ciclo primario y secundario. Básicamente, la isla de turbina de BWR es muy similar a los PWR.

Dado que las centrales eléctricas convencionales (por ejemplo, las centrales de combustibles fósiles) utilizan tecnología muy similar para convertir la energía térmica en energía eléctrica, esta parte de la central nuclear se llama “isla convencional” . En comparación con las centrales eléctricas convencionales, la isla convencional en las centrales nucleares debe cumplir con la especificación significativamente más estricta sobre garantía y control de calidad que se aplica incluso a las partes convencionales de la central nuclear debido al impacto que pueden tener en los sistemas nucleares.

Los componentes clave del sistema de conversión de energía:

  • Turbina De Vapor . Una turbina de vapor es un dispositivo que extrae energía térmica del vapor presurizado y la utiliza para realizar trabajos mecánicos en un eje de salida giratorio.
  • Generador . Un generador es un dispositivo que convierte la energía mecánica de la turbina de vapor en energía eléctrica .
  • Generador de vapor . Los generadores de vapor son intercambiadores de calor utilizados para convertir el agua de alimentación en vapor del calor producido en el núcleo de un reactor nuclear .
  • Condensador . Un condensador es un intercambiador de calor utilizado para condensar vapor de la última etapa de la turbina.
  • Sistema de agua de alimentación de condensados . Los sistemas de agua de alimentación de condensados ​​tienen dos funciones principales. Para suministrar agua de alta calidad adecuada (condensado) al generador de vapor y calentar el agua (condensado) a una temperatura cercana a la saturación.
  • Calentador separador de humedad (MSR) . Los recalentadores del separador de humedad generalmente se instalan entre la salida de la turbina de alta presión y las entradas de la turbina de baja presión para eliminar la humedad del vapor de escape de la turbina de alta presión y recalentar este vapor antes de ingresar a las turbinas LP.
  • Sistema de enfriamiento . La función principal del sistema de enfriamiento en las centrales eléctricas es enfriar el circuito de vapor para condensar el vapor de baja presión y reciclarlo. A medida que el vapor en el circuito interno se condensa de nuevo en agua, el calor sobrante (residual) que se elimina de él debe descargarse por transferencia al aire o a un cuerpo de agua.
  • Sistema de Instrumentación y Control (I&C) . El sistema de instrumentación y control sirve como sistema nervioso central de una central nuclear.

 

Isla Nuclear - Isla Convencional (Turbina)
El diseño de las centrales nucleares consta de dos partes principales: la isla nuclear y la isla convencional (turbina).

Ciclo Rankine
Diagrama Ts del ciclo de Rankine. El ciclo de Rankine lleva el nombre de un ingeniero escocés, William John Macquorn Rankine y describe el rendimiento de los sistemas de turbinas de vapor.

Turbina de vapor de 3000MWth PWR típico
Esquema de una turbina de vapor de un PWR típico de 3000MWth.

Principio de funcionamiento del generador de turbina: generación de electricidad

La mayoría de las plantas de energía nuclear opera un generador de turbina de eje único que consta de una turbina HP de etapas múltiples y tres turbinas LP de etapas múltiples paralelas , un generador principal y un excitador.  La turbina HP generalmente es una turbina de acción de doble flujo (o tipo de reacción) con aproximadamente 10 etapas con cuchillas cubiertas y produce aproximadamente 30-40% de la potencia bruta de salida de la unidad de planta de energía. Turbinas de LP Por lo general, son turbinas de reacción de doble flujo con aproximadamente 5-8 etapas (con álabes envueltos y con álabes independientes de las últimas 3 etapas). Las turbinas de LP producen aproximadamente el 60-70% de la producción de potencia bruta de la unidad de la central eléctrica. Cada rotor de turbina está montado sobre dos cojinetes, es decir, hay cojinetes dobles entre cada módulo de turbina.

Turbina de vapor de 3000MWth PWR típico
Esquema de una turbina de vapor de un PWR típico de 3000MWth.

Del generador de vapor a las principales líneas de vapor: evaporación

Generador de vapor - vertical
Generador de vapor – vertical

El sistema de conversión de potencia de PWR típico  comienza en los generadores de vapor en sus lados de la carcasa. Los generadores de vapor son intercambiadores de calor utilizados para convertir el agua de alimentación en vapor del calor producido en el núcleo de un reactor nuclear . El agua de alimentación (circuito secundario) se calienta desde ~ 230 ° C 500 ° F (fluido precalentado por regeneradores) hasta el punto de ebullición de ese fluido (280 ° C; 536 ° F; 6,5MPa) . El calor se transfiere a través de las paredes de estos tubos al refrigerante secundario de baja presión ubicado en el lado secundario del intercambiador donde el refrigerante se evapora a vapor presurizado vapor saturado 280 ° C; 536 ° F; 6,5 MPa). El vapor saturado sale del generador de vapor a través de una salida de vapor y continúa hacia las líneas principales de vapor y más allá hacia la turbina de vapor .

Generador de vapor a las principales líneas de vaporEstas líneas principales de vapor están unidas entre sí (por ejemplo, a través de una tubería colectora de vapor) cerca de la turbina para garantizar que la diferencia de presión entre cualquiera de los generadores de vapor no exceda el valor específico, manteniendo así el equilibrio del sistema y asegurando la eliminación uniforme del calor del sistema de refrigeración del reactor ( RCS). El vapor fluye a través de las válvulas principales de aislamiento de la línea de vapor (MSIV), que son muy importantes desde el punto de vista de la seguridad, hacia la turbina de alta presión. Directamente en la entrada de la turbina de vapor, hay válvulas de mariposa de ventanilla y válvulas de control . El control de la turbina se logra variando estas aberturas de las válvulas de la turbina. En caso de un viaje de turbina, el suministro de vapor debe aislarse muy rápidamente, generalmente en una fracción de segundo, por lo que las válvulas de cierre deben funcionar de manera rápida y confiable.

De las válvulas de turbina al condensador: expansión

Ciclo Rankine - Diagrama Ts
Ciclo de Rankine – diagrama Ts

Típicamente, la mayoría de las centrales nucleares opera turbinas de vapor de condensación de etapas múltiples . En estas turbinas, la etapa de alta presión recibe vapor (este vapor es vapor casi saturado – x = 0.995 – punto C en la figura; 6 MPa ; 275.6 ° C) de un generador de vapor y lo expulsa al separador-recalentador de humedad (MSR – punto D). El vapor debe recalentarse para evitar daños que puedan producirse en las aspas de la turbina de vapor por vapor de baja calidad.. El alto contenido de gotas de agua puede causar el impacto rápido y la erosión de las cuchillas, lo que ocurre cuando el agua condensada se lanza sobre las cuchillas. Para evitar esto, se instalan drenajes de condensado en la tubería de vapor que conduce a la turbina. El vapor libre de humedad se sobrecalienta mediante el vapor de extracción de la etapa de alta presión de la turbina y el vapor directamente de las líneas principales de vapor.

Fuente: TVO - CN Olkiluoto 3 www.tvo.fi/uploads/julkaisut/tiedostot/ydinvoimalayks_OL3_ENG.pdf
Fuente: TVO – CN Olkiluoto 3 www.tvo.fi/uploads/julkaisut/tiedostot/ydinvoimalayks_OL3_ENG.pdf

El vapor de calefacción se condensa en los tubos y se drena al sistema de agua de alimentación. El recalentador calienta el vapor (punto D) y luego el vapor se dirige a la etapa de baja presión de la turbina de vapor, donde se expande (punto E a F). El vapor agotado luego se condensa en el condensador y está a una presión muy por debajo de la atmosférica (presión absoluta de 0.008 MPa ), y está en un estado parcialmente condensado (punto F), típicamente de una calidad cercana al 90%. Las etapas de alta y baja presión de la turbina generalmente están en el mismo eje para impulsar un generador común, pero tienen casos separados. El generador principal produce energía eléctrica, que se suministra a la red eléctrica.

Turbina de vapor húmedo - Expansión

Del condensador a las bombas de condensado – Condensación

Condensador - Calentadores LP - DesaireadorEl condensador principal condensa el vapor de escape de las etapas de baja presión de la turbina principal y también del sistema de descarga de vapor. El vapor agotado se condensa al pasar sobre tubos que contienen agua del sistema de enfriamiento.

La presión dentro del condensador viene dada por la temperatura del aire ambiente (es decir, la temperatura del agua en el sistema de enfriamiento) y por eyectores de vapor o bombas de vacío , que extraen los gases (no condensables) del condensador de superficie y los expulsan a la atmósfera.

La presión de condensador más baja posible es la presión de saturación correspondiente a la temperatura ambiente (por ejemplo, presión absoluta de 0.008 MPa, que corresponde a 41.5 ° C ). Tenga en cuenta que siempre hay una diferencia de temperatura entre (alrededor de ΔT = 14 ° C ) la temperatura del condensador y la temperatura ambiente, que se origina en el tamaño finito y la eficiencia de los condensadores. Dado que ninguno de los condensadores es un intercambiador de calor 100% eficiente, siempre hay una diferencia de temperatura entre la temperatura de saturación (lado secundario) y la temperatura del refrigerante en el sistema de enfriamiento. Además, existe una ineficiencia en el diseño, que disminuye la eficiencia general de la turbina. Idealmente, el vapor extraído al condensador no tendría subenfriamiento. Pero los condensadores reales están diseñados para subenfriar el líquido unos pocos grados centígrados para evitar la cavitación por succión en las bombas de condensado. Pero, este subenfriamiento aumenta la ineficiencia del ciclo, porque se necesita más energía para recalentar el agua.

Ciclo Rankine - presión del condensador
La disminución de la presión de escape de la turbina aumenta el trabajo neto por ciclo, pero también disminuye la calidad del vapor del vapor de salida.

El objetivo de mantener la presión de escape de turbina práctica más baja es una razón principal para incluir el condensador en una central térmica. El condensador proporciona un vacío que maximiza la energía extraída del vapor, lo que resulta en un aumento significativo del trabajo neto y la eficiencia térmica. Pero también este parámetro (presión del condensador) tiene sus límites de ingeniería:

  • Disminuir la presión de escape de la turbina disminuye la calidad del vapor (o fracción de sequedad). En algún momento, se debe finalizar la expansión para evitar daños que puedan ser causados ​​a las aspas de la turbina de vapor por vapor de baja calidad .
  • La disminución de la presión de escape de la turbina aumenta significativamente el volumen específico de vapor extraído, lo que requiere palas enormes en las últimas filas de la etapa de baja presión de la turbina de vapor.

En una turbina de vapor húmedo típica , el vapor agotado se condensa en el condensador y está a una presión muy inferior a la atmosférica (presión absoluta de 0.008 MPa, que corresponde a 41.5 ° C). Este vapor está en un estado parcialmente condensado (punto F), típicamente de una calidad cercana al 90%. Tenga en cuenta que la presión dentro del condensador también depende de las condiciones atmosféricas ambientales:

  • temperatura del aire, presión y humedad en caso de enfriamiento a la atmósfera
  • temperatura del agua y caudal en caso de enfriamiento en un río o mar

Un aumento en la temperatura ambiente provoca un aumento proporcional en la presión del vapor agotado ( ΔT = 14 ° C suele ser una constante), por lo tanto, la eficiencia térmica del sistema de conversión de energía disminuye. En otras palabras, la salida eléctrica de una planta de energía puede variar con las condiciones ambientales , mientras que la energía térmica permanece constante.

El vapor condensado (ahora llamado condensado) se recoge en el pozo del condensador. La fuente de agua caliente del condensador también proporciona una capacidad de almacenamiento de agua, que se requiere para fines operativos como la distribución del agua de alimentación. El condensado (líquido saturado o ligeramente subenfriado) se entrega a la bomba de condensado y luego se bombea mediante bombas de condensado al desaireador a través del sistema de calentamiento del agua de alimentación. Las bombas de condensado aumentan la presión generalmente a aproximadamente p = 1-2 MPa. Por lo general, hay cuatro bombas centrífugas de condensado de un tercio de capacidad con cabezales de succión y descarga comunes. Normalmente hay tres bombas en funcionamiento con una en la copia de seguridad.

Desde bombas de condensado hasta bombas de agua de alimentación: regeneración de calor

Condensador - Calentadores LP - DesaireadorEl condensado de las bombas de condensado luego pasa a través de varias etapas de calentadores de agua de alimentación de baja presión , en los que la temperatura del condensado aumenta por la transferencia de calor del vapor extraído de las turbinas de baja presión. Por lo general, hay tres o cuatro etapas de calentadores de agua de alimentación de baja presión conectados en la cascada. El condensado sale de los calentadores de agua de alimentación a baja presión a aproximadamente p = 1 MPa, t = 150 ° C y entra al desaireador.. El sistema principal de condensado también contiene un sistema mecánico de purificación de condensado para eliminar impurezas. Los calentadores de agua de alimentación son autorregulables. Significa que cuanto mayor es el flujo de agua de alimentación, mayor es la tasa de absorción de calor del vapor y mayor es el flujo de vapor de extracción.

Hay válvulas de retención en las líneas de extracción de vapor entre los calentadores de agua de alimentación y la turbina. Estas válvulas antirretorno evitan el flujo inverso de vapor o agua en caso de disparo de la turbina, lo que provoca una disminución rápida de la presión dentro de la turbina. Cualquier agua que ingrese a la turbina de esta manera podría causar graves daños a los álabes de la turbina.

Desaireador

Desaireador
Un diagrama esquemático de un desaireador tipo bandeja típico. Fuente: wikipedia.org Licencia: CC BY-SA 3.0

En general, un desaireador es un dispositivo que se utiliza para eliminar oxígeno y otros gases disueltos del agua de alimentación a los generadores de vapor. El desaireador es parte del sistema de calentamiento del agua de alimentación. Por lo general, se encuentra entre el último calentador de baja presión y las bombas de refuerzo de agua de alimentación. En particular, el oxígeno disuelto en el generador de vapor puede causar graves daños por corrosión al adherirse a las paredes de las tuberías metálicas y otros equipos metálicos y formar óxidos (óxido). Además, el dióxido de carbono disuelto se combina con agua para formar ácido carbónico que causa más corrosión.

En el desaireador , el condensado se calienta a condiciones saturadas, generalmente por el vapor extraído de la turbina de vapor. El vapor de extracción se mezcla en el desaireador mediante un sistema de boquillas de pulverización y bandejas en cascada entre las cuales se filtra el vapor. Cualquier gas disuelto en el condensado se libera en este proceso y se elimina del desaireador mediante ventilación a la atmósfera o al condensador principal. Directamente debajo del desaireador está el tanque de almacenamiento de agua de alimentación., en el que se almacena una gran cantidad de agua de alimentación en condiciones de casi saturación. En el evento de disparo de la turbina, esta agua de alimentación puede suministrarse a generadores de vapor para mantener el inventario de agua requerido durante la transición. El desaireador y el tanque de almacenamiento generalmente se encuentran a una gran altura en la sala de turbinas para garantizar una altura de succión positiva neta (NPSH) adecuada en la entrada de las bombas de agua de alimentación. NPSH se usa para medir qué tan cerca está un fluido de las condiciones saturadas. Bajar la presión en el lado de succión puede inducir cavitación . Esta disposición minimiza el riesgo de cavitación en la bomba.

Desde bombas de agua de alimentación hasta generador de vapor

Bombas de agua de alimentación - Calentadores HPEl sistema de bombas de agua de alimentación generalmente contiene tres líneas paralelas ( 3 × 50% ) de bombas de agua de alimentación con cabezales de succión y descarga comunes. Cada bomba de agua de alimentación consiste en el refuerzo y la bomba principal de agua de alimentación . Las bombas de agua de alimentación (generalmente accionadas por turbinas de vapor) aumentan la presión del condensado (~ 1MPa) a la presión en el generador de vapor (~ 6.5MPa).

Las bombas de refuerzo proporcionan la presión de succión de la bomba de agua de alimentación principal requerida. Estas bombas (ambas bombas de agua de alimentación) son normalmente bombas de alta presión (generalmente del tipo de bomba centrífuga ) que toman succión del tanque de almacenamiento de agua del desaireador, que está montado directamente debajo del desaireador, y suministran las bombas de agua de alimentación principales. La descarga de agua de las bombas de agua de alimentación fluye a través de los calentadores de agua de alimentación de alta presión , ingresa a la contención y luego fluye hacia los generadores de vapor .

El flujo de agua de alimentación a cada generador de vapor se controla mediante válvulas reguladoras de agua de alimentación ( FRV ) en cada línea de agua de alimentación. El regulador se controla automáticamente por el nivel del generador de vapor, el flujo de vapor y el flujo de agua de alimentación.

Los calentadores de agua de alimentación de alta presión se calientan por extracción de vapor de la turbina de alta presión, HP Turbine. Los drenajes de los calentadores de agua de alimentación de alta presión generalmente se dirigen al desaireador.

Generador de vapor - vertical
Generador de vapor – vertical

El agua de alimentación ( agua 230 ° C; 446 ° F; 6,5MPa ) se bombea al generador de vapor a través de la entrada del agua de alimentación. En el generador de vapor se calienta el agua de alimentación (circuito secundario) desde ~ 230 ° C 446 ° F hasta el punto de ebullición de ese fluido (280 ° C; 536 ° F; 6,5MPa) . El agua de alimentación se evapora y el vapor a presión ( vapor saturado a 280 ° C; 536 ° F; 6,5 MPa) sale del generador de vapor a través de la salida de vapor y continúa hacia la turbina de vapor, completando así el ciclo.

Eficiencia Térmica de Turbinas de Vapor

En general, la eficiencia térmica , η º , de cualquier motor de calor se define como la relación de la obra lo hace, W , para el calor de entrada a la alta temperatura, Q H .

fórmula de eficiencia térmica - 1

La eficiencia térmica , η th , representa la fracción de calor , H , que se convierte en trabajo . Dado que la energía se conserva de acuerdo con la primera ley de la termodinámica y la energía no se puede convertir para trabajar por completo, la entrada de calor, Q H , debe ser igual al trabajo realizado, W, más el calor que se debe disipar como calor residual Q C en el ambiente. Por lo tanto, podemos reescribir la fórmula para la eficiencia térmica como:

fórmula de eficiencia térmica - 2

Esta es una fórmula muy útil, pero aquí expresamos la eficiencia térmica utilizando la primera ley en términos de entalpía .

Ciclo Rankine - Diagrama Ts
Ciclo de Rankine – diagrama Ts

Típicamente, la mayoría de las centrales nucleares opera turbinas de vapor de condensación de etapas múltiples . En estas turbinas, la etapa de alta presión recibe vapor (este vapor es vapor casi saturado – x = 0.995 – punto C en la figura; 6 MPa ; 275.6 ° C) desde un generador de vapor y lo expulsa al separador-recalentador de humedad (punto D ) El vapor debe recalentarse para evitar daños que puedan ocasionar a las aspas de la turbina de vapor el vapor de baja calidad . El recalentador calienta el vapor (punto D) y luego el vapor se dirige a la etapa de baja presión de la turbina de vapor, donde se expande (punto E a F). El vapor agotado se condensa en el condensador y está a una presión muy por debajo de la atmosférica (presión absoluta de0.008 MPa ), y está en un estado parcialmente condensado (punto F), típicamente de una calidad cercana al 90%.

En este caso, los generadores de vapor, la turbina de vapor, los condensadores y las bombas de agua de alimentación constituyen un motor térmico, sujeto a las limitaciones de eficiencia impuestas por la segunda ley de la termodinámica . En el caso ideal (sin fricción, procesos reversibles, diseño perfecto), este motor térmico tendría una eficiencia de Carnot de

= 1 – T frío / T caliente = 1 – 315/549 = 42.6%

donde la temperatura del depósito caliente es 275.6 ° C (548.7K), la temperatura del depósito frío es 41.5 ° C (314.7K). Pero la central nuclear es el motor térmico real , en el que los procesos termodinámicos son de alguna manera irreversibles. No se hacen infinitamente lento. En dispositivos reales (como turbinas, bombas y compresores) una fricción mecánica y pérdidas de calor causan pérdidas adicionales de eficiencia.

Para calcular la eficiencia térmica del ciclo de Rankine más simple (sin recalentamiento), los ingenieros utilizan la primera ley de la termodinámica en términos de entalpía en lugar de en términos de energía interna.

La primera ley en términos de entalpía es:

dH = dQ + Vdp

En esta ecuación, el término Vdp es un proceso de flujo de trabajo. Este trabajo,   Vdp , se utiliza para sistemas de flujo abierto como una turbina o una bomba en la que hay un “dp” , es decir, un cambio de presión. No hay cambios en el volumen de control . Como puede verse, esta forma de ley simplifica la descripción de la transferencia de energía . A presión constante , el cambio de entalpía es igual a la energía transferida del ambiente a través del calentamiento:

Proceso isobárico (Vdp = 0):

dH = dQ → Q = H 2 – H 1

En una entropía constante , es decir, en un proceso isentrópico, el cambio de entalpía es igual al trabajo del proceso de flujo realizado en o por el sistema:

Proceso isentrópico (dQ = 0):

dH = Vdp → W = H 2 – H 1

Es obvio, será muy útil en el análisis de los dos ciclos termodinámicos utilizados en la ingeniería de energía, es decir, en el ciclo de Brayton y el ciclo de Rankine.

La entalpía se puede convertir en una variable intensiva o específica dividiéndola por la masa . Los ingenieros usan la entalpía específica en el análisis termodinámico más que la entalpía misma. Se tabula en las tablas de vapor junto con un volumen específico y una energía interna específica . La eficiencia térmica de dicho ciclo simple de Rankine y en términos de entalpías específicas sería:

eficiencia térmica del ciclo de Rankine

Es una ecuación muy simple y para determinar la eficiencia térmica puede usar datos de tablas de vapor .

Takaishi, Tatsuo;  Numata, Akira;  Nakano, Ryouji;  Sakaguchi, Katsuhiko (marzo de 2008).
Takaishi, Tatsuo; Numata, Akira; Nakano, Ryouji; Sakaguchi, Katsuhiko (marzo de 2008). “Enfoque para motores diesel y de gas de alta eficiencia” (PDF). Revisión técnica de Mitsubishi Heavy Industries. 45 (1). Consultado el 4 de febrero de 2011.

En las centrales nucleares modernas, la eficiencia térmica general es de aproximadamente un tercio (33%), por lo que se necesitan 3000 MWth de energía térmica de la reacción de fisión para generar 1000 MWe de energía eléctrica. La razón radica en una temperatura de vapor relativamente baja ( 6 MPa ; 275.6 ° C). Se pueden lograr mayores eficiencias aumentando la temperaturadel vapor Pero esto requiere un aumento de las presiones dentro de las calderas o generadores de vapor. Sin embargo, las consideraciones metalúrgicas ponen límites superiores a tales presiones. En comparación con otras fuentes de energía, la eficiencia térmica del 33% no es mucho. Pero debe tenerse en cuenta que las centrales nucleares son mucho más complejas que las centrales de combustibles fósiles y es mucho más fácil quemar combustibles fósiles que generar energía a partir de combustibles nucleares. Las plantas de energía de combustible fósil subcrítico, que funcionan bajo presión crítica (es decir, por debajo de 22.1 MPa), pueden lograr una eficiencia de 36 a 40%.

Causas de ineficiencia

Como se discutió, una eficiencia puede variar entre 0 y 1. Cada motor térmico es de alguna manera ineficiente. Esta ineficiencia puede atribuirse a tres causas.

  • Irreversibilidad de los procesos . Existe un límite superior teórico general para la eficiencia de la conversión de calor para trabajar en cualquier motor térmico. Este límite superior se llama eficiencia de Carnot . Según el principio de Carnot , ningún motor puede ser más eficiente que un motor reversible ( un motor térmico de Carnot ) que opera entre los mismos depósitos de alta temperatura y baja temperatura. Por ejemplo, cuando el depósito caliente tiene T caliente de 400 ° C (673K) y T frío de aproximadamente 20 ° C (293K), la eficiencia máxima (ideal) será: = 1 – T frío / T caliente = 1 – 293 / 673 = 56%. Pero todos los procesos termodinámicos reales son de alguna manera irreversibles.. No se hacen infinitamente lento. Por lo tanto, los motores térmicos deben tener eficiencias más bajas que los límites en su eficiencia debido a la irreversibilidad inherente del ciclo del motor térmico que usan.
  • Presencia de fricción y pérdidas de calor. En sistemas termodinámicos reales o en motores de calor real, una parte de la ineficiencia general del ciclo se debe a las pérdidas de los componentes individuales. En dispositivos reales (como turbinas, bombas y compresores), una fricción mecánica , pérdidas de calor y pérdidas en el proceso de combustión causan pérdidas adicionales de eficiencia.
  • Ineficiencia de diseño . Finalmente, la última y también importante fuente de ineficiencias son los compromisos asumidos por los ingenieros al diseñar un motor térmico (por ejemplo, una central eléctrica). Deben considerar el costo y otros factores en el diseño y operación del ciclo. Como ejemplo, considere un diseño del condensador en las centrales térmicas. Idealmente, el vapor extraído al condensador no tendría subenfriamiento . Pero los condensadores reales están diseñados para subenfriar el líquido unos pocos grados centígrados para evitar la cavitación por succión en las bombas de condensado. Pero, este subenfriamiento aumenta la ineficiencia del ciclo, porque se necesita más energía para recalentar el agua.

Mejora de la eficiencia térmica – Ciclo Rankine

Existen varios métodos, ¿cómo puede mejorar la eficiencia térmica del ciclo de Rankine? Suponiendo que la temperatura máxima está limitada por la presión dentro del recipiente a presión del reactor, estos métodos son:

  • Presiones de caldera y condensador
  • Sobrecalentamiento y recalentamiento
  • Regeneración de calor
  • Ciclo supercrítico de Rankine

Eficiencia isentrópica: turbina, bomba

En capítulos anteriores supusimos que la expansión del vapor es isentrópica y, por lo tanto, usamos T 4,  como la temperatura de salida del gas. Estos supuestos solo son aplicables con ciclos ideales.

La mayoría de los dispositivos de flujo constante (turbinas, compresores, boquillas) funcionan en condiciones adiabáticas, pero no son realmente isentrópicos, sino que están idealizados como isentrópicos para fines de cálculo. Definimos los parámetros η T ,  η P , η N , como una relación entre el trabajo real realizado por el dispositivo y el trabajo del dispositivo cuando se opera en condiciones isentrópicas (en el caso de una turbina). Esta relación se conoce como la eficiencia de la turbina isentrópica / bomba / boquilla . Estos parámetros describen qué tan eficientemente una turbina, compresor o boquilla se aproxima a un dispositivo isentrópico correspondiente. Este parámetro reduce la eficiencia general y el rendimiento del trabajo. Para turbinas, el valor de η T es típicamente de 0.7 a 0.9 (70-90%).

Ver también: proceso isentrópico

Eficiencia isentrópica - turbina - bomba

Compresión isentrópica versus adiabática

Expansión isentrópica versus adiabática
El proceso isentrópico es un caso especial de procesos adiabáticos. Es un proceso adiabático reversible. Un proceso isentrópico también se puede llamar un proceso de entropía constante.

Ciclo de Rankine: problema con la solución

Ciclo RankineSupongamos el ciclo de Rankine , que es uno de los ciclos termodinámicos más comunes en las centrales térmicas. En este caso, suponga un ciclo simple sin recalentamiento y sin turbina de vapor de condensación funcionando con vapor saturado  (vapor seco). En este caso, la turbina opera en estado estable con condiciones de entrada de 6 MPa, t = 275.6 ° C, x = 1 (punto 3). El vapor sale de esta etapa de la turbina a una presión de 0.008 MPa, 41.5 ° C yx = ??? (punto 4).

Calcular:

  1. la calidad del vapor del vapor de salida
  2. la diferencia de entalpía entre estos dos estados (3 → 4), que corresponde al trabajo realizado por el vapor, W T .
  3. la diferencia de entalpía entre estos dos estados (1 → 2), que corresponde a la labor realizada por las bombas, W P .
  4. La diferencia de entalpía entre estos dos estados (2 → 3), que corresponde al calor neto agregado en el generador de vapor
  5. la eficiencia termodinámica de este ciclo y compare este valor con la eficiencia de Carnot

1)

Como no conocemos la calidad exacta del vapor del vapor de salida, tenemos que determinar este parámetro. El estado 4 está fijado por la presión 4 = 0.008 MPa y el hecho de que la entropía específica es constante para la expansión isentrópica (s 3 = s 4 = 5.89 kJ / kgK para 6 MPa ). La entropía específica del agua líquida saturada (x = 0) y el vapor seco (x = 1) puede seleccionarse de las tablas de vapor . En caso de vapor húmedo, la entropía real se puede calcular con la calidad del vapor, x, y las entropías específicas de agua líquida saturada y vapor seco:

4 = s v x + (1 – x) s l              

dónde

4 = entropía de vapor húmedo (J / kg K) = 5.89 kJ / kgK

v = entropía de vapor “seco” (J / kg K) = 8.227 kJ / kgK (para 0.008 MPa)

l = entropía de agua líquida saturada (J / kg K) = 0.592 kJ / kgK (para 0.008 MPa)

De esta ecuación, la calidad del vapor es:

4 = ( 4 – s l ) / ( v – s l ) = (5.89 – 0.592) / (8.227 – 0.592) = 0.694 = 69.4%

2)

La entalpía para el estado 3 puede seleccionarse directamente de las mesas de vapor, mientras que la entalpía para el estado 4 debe calcularse utilizando la calidad del vapor:

3, v = 2785 kJ / kg

4, húmedo = h 4, v x + (1 – x) h 4, l  = 2576. 0.694 + (1 – 0.694). 174 = 1787 + 53,2 = 1840 kJ / kg

Entonces el trabajo realizado por el vapor, W T, es

T = Δh = 945 kJ / kg

3)

La entalpía para el estado 1 puede seleccionarse directamente de las mesas de vapor:

1, l = 174 kJ / kg

El estado 2 está fijado por la presión p 2 = 6.0 MPa y el hecho de que la entropía específica es constante para la compresión isentrópica (s 1 = s 2 = 0.592 kJ / kgK para 0.008 MPa ). Para esta entropía s 2 = 0.592 kJ / kgK y p 2 = 6.0 MPa encontramos 2, subenfriado en tablas de vapor para agua comprimida (usando interpolación entre dos estados).

2, subenfriado = 179.7 kJ / kg

Entonces el trabajo realizado por las bombas, W P, es

P = Δh = 5.7 kJ / kg

4)

La diferencia de entalpía entre (2 → 3), que corresponde al calor neto agregado en el generador de vapor, es simplemente:

add = h 3, v  – h 2, subenfriado = 2785 – 179.7 =   2605.3 kJ / kg

Tenga en cuenta que no hay regeneración de calor en este ciclo. Por otro lado, la mayor parte del calor agregado es para la entalpía de vaporización (es decir, para el cambio de fase).

5)

En este caso, los generadores de vapor, la turbina de vapor, los condensadores y las bombas de agua de alimentación constituyen un motor térmico, sujeto a las limitaciones de eficiencia impuestas por la segunda ley de la termodinámica . En el caso ideal (sin fricción, procesos reversibles, diseño perfecto), este motor térmico tendría una eficiencia de Carnot de

η Carnot = 1 – T frío / T caliente = 1 – 315/549 = 42.6%

donde la temperatura del depósito caliente es de 275.6 ° C (548.7 K), la temperatura del depósito frío es de 41.5 ° C (314.7K).

La eficiencia termodinámica de este ciclo se puede calcular mediante la siguiente fórmula:

Ciclo de Rankine - ejemplo - eficiencia térmica

así
η th = (945 – 5.7) / 2605.3 = 0.361 = 36.1%

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.