Qu’est-ce que la loi de Stefan – Boltzmann? – Constante de Stefan-Boltzmann – Définition

La loi de Stefan – Boltzmann donne l’intensité de rayonnement d’un seul objet. La constante de Stefan – Boltzmann doit son nom à Josef Stefan et à Ludwig Boltzman. Génie thermique

Loi Stefan – Boltzmann

Le taux de transfert de chaleur par rayonnement , q [W / m 2 ], d’un corps (par exemple un corps noir) à son environnement est proportionnel à la quatrième puissance de la température absolue et peut être exprimé par l’équation suivante:

q = εσT 4

où σ est une constante physique fondamentale appelée constante de Stefan – Boltzmann , égale à 5,6977 × 10 -8 W / m 2 K 4 . La constante de Stefan – Boltzmann doit son nom à Josef Stefan (qui a découvert la loi de Stefa-Boltzman à titre expérimental en 1879) et à Ludwig Boltzmann (qui l’a dérivé théoriquement peu de temps après). Comme on peut le constater, le transfert de chaleur par rayonnement est important à très haute température et dans le vide .

 

Comme il a été écrit, la loi de Stefan – Boltzmann  donne l’intensité rayonnante d’un seul objet . Mais en utilisant la loi de Stefan – Boltzmann , nous pouvons également déterminer le transfert de chaleur par rayonnement entre deux objets. Deux corps qui rayonnent l’un vers l’autre ont un flux de chaleur net entre eux. Le débit net de chaleur entre eux est donné par:Q = εσA 1-2 (T 1 -T 2 ) [J / s]

q = εσ (T 1 -T 2 ) [J / m 2 s]

Le facteur de surface A 1-2 est la surface vue par le corps 2 du corps 1 et peut devenir assez difficile à calculer.

Rayonnement du corps noir

Il est connu que la quantité d’énergie de rayonnement émise par une surface à une longueur d’onde donnée dépend du matériau du corps et de l’état de sa surface ainsi que de la température de surface . Par conséquent, divers matériaux émettent différentes quantités d’énergie rayonnante même lorsqu’ils sont à la même température. Un corps qui émet le maximum de chaleur pour sa température absolue est appelé corps noir .

rayonnement du corps noirUn corps noir est un corps physique idéalisé, qui possède des propriétés spécifiques. Par définition, un corps noir en équilibre thermique a une émissivité de ε = 1.0 . Les vrais objets ne dégagent pas autant de chaleur qu’un corps noir parfait. Ils dégagent moins de chaleur qu’un corps noir et sont donc appelés corps gris.

La surface d’un corps noir émet un rayonnement thermique à raison d’environ 448 watts par mètre carré à température ambiante (25 ° C, 298,15 K). Les objets réels avec des émissivités inférieures à 1,0 (par exemple, un fil de cuivre) émettent un rayonnement à des taux correspondants plus faibles (par exemple 448 x 0,03 = 13,4 W / m 2 ). L’émissivité joue un rôle important dans les problèmes de transfert de chaleur. Par exemple, les capteurs solaires thermiques incorporent des surfaces sélectives qui ont de très faibles émissivités. Ces capteurs gaspillent très peu d’énergie solaire par l’émission de rayonnement thermique.

Puisque l’ absorptivité et l’ émissivité sont interconnectées par la loi de Kirchhoff sur le rayonnement thermique , un corps noir est également un parfait absorbeur de rayonnement électromagnétique.

Loi de Kirchhoff sur le rayonnement thermique :

Pour un corps arbitraire émettant et absorbant un rayonnement thermique en équilibre thermodynamique, l’émissivité est égale à l’absorptivité.

émissivité ε = absorptivité α

Un corps noir absorbe tous les rayonnements électromagnétiques incidents, indépendamment de la fréquence ou de l’angle d’incidence. Sa capacité d’absorption est donc égale à l’unité, qui est également la valeur la plus élevée possible. Autrement dit, un corps noir est un absorbeur parfait (et un émetteur parfait ).

Notez que le rayonnement visible occupe une bande très étroite du spectre de 0,4 à 0,76 nm, nous ne pouvons pas porter de jugement sur la noirceur d’une surface sur la base d’observations visuelles. Par exemple, considérons le papier blanc qui réfléchit la lumière visible et apparaît donc blanc. En revanche, il est essentiellement noir pour le rayonnement infrarouge ( absorptivité α = 0,94 ) car ils absorbent fortement le rayonnement à grande longueur d’onde.

……………………………………………………………………………………………………………………………….

Cet article est basé sur la traduction automatique de l’article original en anglais. Pour plus d’informations, voir l’article en anglais. Pouvez vous nous aider Si vous souhaitez corriger la traduction, envoyez-la à l’adresse: [email protected] ou remplissez le formulaire de traduction en ligne. Nous apprécions votre aide, nous mettrons à jour la traduction le plus rapidement possible. Merci