O que é condução de calor em uma barra de combustível – Definição

Condução de calor em uma barra de combustível. O comportamento térmico e mecânico das pastilhas de combustível, ou varetas de combustível, constitui uma das três principais disciplinas do projeto. Engenharia Térmica

Condução de calor em uma barra de combustível

Condução de calor em uma barra de combustível

Combustível Nuclear - TemperaturasA maioria dos PWRs usa o combustível de urânio , que está na forma de dióxido de urânio . O dióxido de urânio é um sólido semicondutor preto com condutividade térmica muito baixa. Por outro lado, o dióxido de urânio tem um ponto de fusão muito alto e um comportamento bem conhecido. A UO 2 é prensada em pastilhas cilíndricas , essas pastilhas são então sinterizadas no sólido.

Esses pellets cilíndricos são então carregados e encapsulados dentro de uma barra de combustível (ou pino de combustível), feita de ligas de zircônio devido à sua seção transversal de absorção muito baixa (ao contrário do aço inoxidável). A superfície do tubo, que cobre os pellets, é chamada de revestimento de combustível .

Veja também:  Condução térmica de dióxido de urânio

O comportamento térmico e mecânico dos pellets  e barras de combustível constitui uma das três principais disciplinas do projeto. O combustível nuclear é operado sob condições muito inóspitas (térmica, radiação, mecânica) e deve suportar mais do que as condições normais de operação. Por exemplo, as temperaturas no centro dos pellets de combustível atingem mais de 1000 ° C (1832 ° F) acompanhadas por liberações de gás de fissão. Portanto, o conhecimento detalhado da distribuição de temperatura em uma única barra de combustível é essencial para a operação segura do combustível nuclear. Nesta seção, estudaremos a equação de condução de calor em coordenadas cilíndricasusando a condição limite de Dirichlet com determinada temperatura da superfície (ou seja, usando a condição limite de Dirichlet). A análise abrangente do perfil de temperatura da barra de combustível será estudada em seção separada.

Temperatura na linha central de um pellet de combustível

Considere o pellet de combustível de raio U = 0,40 cm , no qual há geração uniforme e constante de calor por unidade de volume, V [W / m 3 ] . Em vez da taxa de calor volumétrica q V [W / m 3 ], os engenheiros costumam usar a taxa de calor linear, q L [W / m] , que representa a taxa de calor de um metro da barra de combustível. A taxa linear de calor pode ser calculada a partir da taxa volumétrica de calor por:

taxa de calor linear vs taxa de calor volumétrico

A linha central é tomada como a origem da coordenada r. Devido à simetria na direção z e na direção azimutal, podemos separar as variáveis ​​e simplificar esse problema para um problema unidimensional . Assim, resolveremos a temperatura apenas em função do raio T (r) . Para condutividade térmica constante , k, a forma apropriada da equação de calor cilíndrica é:

equação do calor - cilíndrica - 2

A solução geral desta equação é:

equação do calor - cilíndrica - solução geral

onde C 1 e C 2 são as constantes de integração.

Condução térmica - pellet de combustívelCalcule a distribuição de temperatura, T (r) , neste sedimento de combustível, se:

  • as temperaturas na superfície do sedimento de combustível são U = 420 ° C
  • raio da pastilha de combustível U = 4 mm .
  • a condutividade média do material é k = 2,8 W / mK (corresponde ao dióxido de urânio a 1000 ° C)
  • a taxa de calor linear é L = 300 W / cm e, portanto, a taxa de calor volumétrica é q V = 597 x 10 6 W / m 3

Neste caso, a superfície é mantida a temperaturas dadas T U . Isso corresponde à condição de limite de Dirichlet . Além disso, esse problema é termicamente simétrico e, portanto, também podemos usar a condição de contorno de simetria térmica . As constantes podem ser avaliadas usando a substituição na solução geral e têm a forma:

equação do calor - cilíndrica - condições de contorno

A distribuição de temperatura resultante e a temperatura da linha central (r = 0) (máxima) neste sedimento cilíndrico de combustível nessas condições de contorno específicas serão:

equação do calor - cilíndrica - solução

fluxo de calor radial em qualquer raio, q r [Wm -1 ], no cilindro pode, é claro, ser determinado usando a distribuição de temperatura e com a lei de Fourier . Observe que, com a geração de calor, o fluxo de calor não é mais independente de r.

A figura a seguir mostra a distribuição de temperatura no pellet de combustível em vários níveis de potência.

Distribuição de temperatura - combustível nuclear

______

A temperatura em um reator operacional varia de ponto a ponto dentro do sistema. Como consequência, há sempre uma vara de combustível e um volume local , que está mais quente  do que todo o resto. Para limitar esses locais quentes, os limites de potência máxima devem ser introduzidos. Os limites de potência máxima estão associados a uma crise de ebulição e às condições que podem causar o derretimento do pellet de combustível. No entanto, considerações metalúrgicas impõem limites superiores à temperatura do revestimento do combustível e do sedimento de combustível. Acima dessas temperaturasexiste o perigo de o combustível ser danificado. Um dos principais objetivos no projeto de reatores nucleares é fornecer a remoção do calor produzido no nível de potência desejado, garantindo que a temperatura máxima do combustível e a temperatura máxima do revestimento estejam sempre abaixo desses valores predeterminados.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.