Facebook Instagram Youtube Twitter

O que é exemplo – Expansão adiabática em turbina a gás – Definição

Exemplo – Expansão Adiabática em Turbina a Gás. Assuma uma expansão adiabática de hélio (3 → 4) em uma turbina a gás. Calcule a temperatura de saída do gás. Engenharia Térmica

Exemplo de expansão adiabática

Diagrama PV - processo adiabático
Assuma uma expansão adiabática de hélio (3 → 4) em uma turbina a gás (ciclo de Brayton).

Assuma uma expansão adiabática de hélio ( 3 → 4 ) em uma turbina a gás . Como o hélio se comporta quase como um gás ideal , use a lei do gás ideal para calcular a temperatura de saída do gás ( 4, real ). Nessas turbinas, o estágio de alta pressão recebe gás (ponto 3 na figura; p 3 = 6,7 MPa ; 3 = 1190 K (917 ° C)) de um trocador de calor e o esgota em outro trocador de calor, onde a pressão de saída é p 4 = 2,78 MPa (ponto 4) .

Solução:

A temperatura de saída do gás, T4 , real , pode ser calculada usando a relação p, V, T para um processo adiabático. Observe que, é a mesma relação do processo isentrópico , portanto, os resultados devem ser idênticos. Nesse caso, calculamos a expansão para diferentes turbinas a gás (menos eficientes), como no caso da expansão isentrópica na turbina a gás.

relação p, V, T - processo isentrópico

Nesta equação, o fator para o hélio é igual a κ = c p / c v = 1,66 . A partir da equação anterior, segue que a temperatura de saída do gás, T4 , real , é:

processo adiabático - exemplo

Veja também:  Relação de Mayer

Principais características do processo adiabático
Principais características do processo adiabático

Veja também: Primeira lei da termodinâmica

Veja também: Lei do gás ideal

Veja também: O que é entalpia

Processo adiabático em turbina a gás

primeira lei - exemplo - ciclo de brayton
O ciclo ideal de Brayton consiste em quatro processos termodinâmicos. Dois processos isentrópicos e dois processos isobáricos.

Vamos assumir o  ciclo de Brayton  que descreve o funcionamento de um  motor de calor com pressão constante  . Os modernos  motores de turbina a gás e os motores a  jato de respiração  também seguem o ciclo de Brayton.

O ciclo de Brayton consiste em quatro processos termodinâmicos. Dois processos adiabáticos e dois processos isobáricos.

  1. compressão adiabática  – o ar ambiente é aspirado para o compressor, onde é pressurizado (1 → 2). O trabalho necessário para o compressor é dado por  C  = H 2  – H 1 .
  2. adição de calor isobárico  – o ar comprimido passa por uma câmara de combustão, onde o combustível é queimado e o ar ou outro meio é aquecido (2 → 3). É um processo de pressão constante, já que a câmara está aberta para entrar e sair. O calor líquido adicionado é dado por  add  = H  – H 2
  3. expansão adiabática  – o ar aquecido e pressurizado se expande na turbina, gasta sua energia. O trabalho realizado pela turbina é dado por  T  = H 4  – H 3
  4. rejeição de calor isobárica  – o calor residual deve ser rejeitado para fechar o ciclo. O calor líquido rejeitado é dado por  re  = H  – H 1

Como pode ser visto, podemos descrever e calcular (por exemplo, eficiência térmica ) esses ciclos (da mesma forma para o  ciclo de Rankine ) usando  entalpias .

Veja também: Eficiência térmica do ciclo de Brayton

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: translations@nuclear-power.com ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.