Facebook Instagram Youtube Twitter

Was ist die Formel des ersten Hauptsatzes der Thermodynamik – Definition

Formeln des ersten Hauptsatzes der Thermodynamik

Die Zunahme der inneren Energie eines geschlossenen Systems entspricht der dem System zugeführten Wärme abzüglich der von ihm geleisteten Arbeit.

Formel:

∆E int = Q – W.

Dies ist der erste Hauptsatz der Thermodynamik und es ist das Prinzip der Erhaltung der Energie , was bedeutet , dass Energie kann weder erzeugt noch vernichtet werden , sondern in verschiedene Formen als Fluid umgewandelt in dem Steuerraum wird untersucht.

Es ist das wichtigste Gesetz für die Analyse der meisten Systeme und das Gesetz, das quantifiziert, wie Wärmeenergie in andere Energieformen umgewandelt wird . Daraus folgt, dass Perpetual-Motion-Maschinen der ersten Art unmöglich sind.

Differentialform:

Differentialform:

dE int = dQ – dW

Die interne Energie E int eines Systems nimmt tendenziell zu, wenn Energie als Wärme Q hinzugefügt wird, und nimmt tendenziell ab, wenn Energie als vom System geleistete Arbeit W verloren geht.

Erstes Gesetz in Bezug auf die Enthalpie dH = dQ + Vdp

Die Enthalpie ist definiert als die Summe aus der seinen inneren Energie E plus das Produkt des Druck p und Volumen V . In vielen thermodynamischen Analysen erscheint die Summe der inneren Energie U und des Produkts aus Druck p und Volumen V, daher ist es zweckmäßig, der Kombination einen Namen, eine Enthalpie und ein eindeutiges Symbol H zu geben.

H = U + pV

Siehe auch: Enthalpie

Der erste Hauptsatz der Thermodynamik in Bezug auf die Enthalpie zeigt uns, warum Ingenieure die Enthalpie in thermodynamischen Kreisprozessen verwenden (z. B. Brayton-Zyklus oder Rankine-Zyklus ).

Die klassische Form des Gesetzes ist die folgende Gleichung:

dU = dQ – dW

In dieser Gleichung dW gleich dW = pdV und ist bekannt als die Grenz Arbeit .

Da H = U + pV ist , ist dH = dU + pdV + Vdp und wir setzen dU = dH – pdV – Vdp in die klassische Form des Gesetzes ein:dH – pdV – Vdp = dQ – pdV

Wir erhalten das Gesetz in Bezug auf die Enthalpie:

dH = dQ + Vdp

oder

dH = TdS + Vdp

In dieser Gleichung ist der Begriff Vdp eine Flussprozessarbeit. Diese Arbeit,   Vdp , wird für Open-Flow-Systeme wie eine Turbine oder eine Pumpe verwendet, bei denen ein „dp“ vorliegt , dh eine Druckänderung. Es gibt keine Änderungen in der Lautstärke . Wie zu sehen ist, vereinfacht diese Form des Gesetzes die Beschreibung der Energieübertragung . Bei konstantem Druck entspricht die Enthalpieänderung der Energie , die durch Erhitzen aus der Umgebung übertragen wird:

Isobarer Prozess (Vdp = 0):

dH = dQ            Q = H 2 – H 1

Bei konstanter Entropie , dh im isentropischen Prozess, entspricht die Enthalpieänderung der am oder vom System durchgeführten Flussprozessarbeit :

Isentropischer Prozess (dQ = 0):

dH = Vdp            W = H 2 – H 1

Es ist offensichtlich, dass es bei der Analyse sowohl der in der Energietechnik verwendeten thermodynamischen Kreisprozessen, dh des Brayton-Zyklus als auch des Rankine-Zyklus, sehr nützlich sein wird.

pΔV Arbeit

pdV Arbeit - Thermodynamik
pΔV Arbeit ist gleich der Fläche unter der Prozesskurve, die im Druck-Volumen-Diagramm aufgetragen ist.

Beispiel:

Stellen Sie sich einen reibungslosen Kolben vor, der verwendet wird, um einen konstanten Druck von 500 kPa in einem Zylinder bereitzustellen , der Dampf ( überhitzten Dampf ) mit einem Volumen von 2 m 3  bei 500 K enthält .

Berechnen der Endtemperatur, falls 3000 kJ von Wärme hinzugefügt wird.

Lösung:

Anhand von Dampftabellen wissen wir, dass die spezifische Enthalpie eines solchen Dampfes (500 kPa; 500 K) etwa 2912 kJ / kg beträgt . Da der Dampf unter diesen Bedingungen eine Dichte von 2,2 kg / m 3 hat , wissen wir, dass sich bei einer Enthalpie von 2912 kJ / kg x 4,4 kg = 12812 kJ etwa 4,4 kg Dampf im Kolben befinden .

Wenn wir einfach Q = H 2 – H 1 verwenden , ist die resultierende Dampfenthalpie:

2 = H 1 + Q = 15812 kJ

Von Dampftabellen , wie Heißdampf (15812 / 4,4 = 3593 kJ / kg) wird eine Temperatur von haben 828 K (555 ° C) . Da der Dampf bei dieser Enthalpie eine Dichte von 1,31 kg / m 3 hat , ist es offensichtlich, dass er sich um etwa 2,2 / 1,31 = 1,67 (+ 67%) ausgedehnt hat. Daher beträgt das resultierende Volumen 2 m 3 × 1,67 = 3,34 m 3 und ∆V = 3,34 m 3 – 2 m 3 = 1,34 m 3 .

Der p∆V- Teil der Enthalpie, dh die geleistete Arbeit, ist:

W = p∆V = 500 000 Pa × 1,34 m 3 = 670 kJ

 

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.