Facebook Instagram Youtube Twitter

Was ist Fassadendämmung – Außenwanddämmung – Definition

Die Fassadendämmung ist eine wärmeisolierte, schützende, dekorative Außenverkleidung, bei der verschiedene Dämmstoffe verwendet werden. Wärmetechnik

Fassadendämmung – Außenwanddämmung

Eine Hauptquelle für den Wärmeverlust eines Hauses sind Wände und Fassaden . Die Fassadendämmung ist eine wärmeisolierte, schützende, dekorative Außenverkleidung, bei der eine Dämmung aus Polystyrolschaum, Glas- oder Steinwolle, Polyurethanschaum oder Phenolschaum verwendet wird, die mit einem mineralischen oder synthetischen Putz auf Zementbasis überzogen wird.

Der Zweck der Fassadendämmung besteht darin, den gesamten Wärmeübergangskoeffizienten durch Hinzufügen von Materialien mit geringer Wärmeleitfähigkeit zu verringern .  Die Wärmedämmung von Außenwänden in Gebäuden ist ein wichtiger Faktor für den thermischen Komfort der Bewohner. Die Außenwanddämmung sowie andere Dämmstoffe reduzieren den unerwünschten Wärmeverlust und den unerwünschten Wärmegewinn. Sie können den Energiebedarf von Heizungs- und Kühlsystemen erheblich senken. Es muss hinzugefügt werden, es gibt kein Material, das Wärmeverluste vollständig verhindern kann, Wärmeverluste können nur minimiert werden.

Dämmstoffe

Wärmeisolatoren - ParameterWie bereits geschrieben, basiert die Wärmedämmung auf der Verwendung von Substanzen mit sehr geringer Wärmeleitfähigkeit . Diese Materialien werden als Isolationsmaterialien bezeichnet . Übliche Isolationsmaterialien sind Wolle, Glasfaser, Steinwolle, Polystyrol, Polyurethan und Gänsefedern usw. Diese Materialien sind sehr schlechte Wärmeleiter und daher gute Wärmeisolatoren.

Es muss hinzugefügt werden, die Wärmedämmung beruht in erster Linie auf der sehr geringen Wärmeleitfähigkeit von Gasen. Gase weisen im Vergleich zu Flüssigkeiten und Feststoffen schlechte Wärmeleitungseigenschaften auf und sind daher ein gutes Isolationsmaterial, wenn sie eingeschlossen werden können (z. B. in einer schaumartigen Struktur ). Luft und andere Gase sind im Allgemeinen gute Isolatoren. Der Hauptvorteil liegt jedoch in der Abwesenheit von Konvektion . Viele Isolationsmaterialien (z. B. Polystyrol) funktionieren daher einfach, indem sie eine große Anzahl von gasgefüllten Taschen aufweisen, die eine Konvektion im großen Maßstab verhindern . Bei allen Arten der Wärmedämmung wird durch die Evakuierung der Luft im Hohlraum die Gesamtwärmeleitfähigkeit des Isolators weiter verringert.

Der Wechsel von Gastasche und festem Material führt dazu, dass die Wärme über viele Grenzflächen übertragen werden muss, was zu einer raschen Abnahme des Wärmeübertragungskoeffizienten führt.

Für Dämmstoffe können drei allgemeine Kategorien definiert werden. Diese Kategorien basieren auf der chemischen Zusammensetzung des Grundmaterials, aus dem das Isoliermaterial hergestellt wird.

Dämmstoffe - Typen

In weiterer Lektüre finden Sie eine kurze Beschreibung dieser Arten von Dämmstoffen.

Anorganische Dämmstoffe

Wie aus der Figur ersichtlich ist, können anorganische Materialien entsprechend klassifiziert werden:

Organische Dämmstoffe

Die in diesem Abschnitt behandelten organischen Dämmstoffe stammen alle aus einem petrochemischen oder nachwachsenden Rohstoff (biobasiert). Fast alle petrochemischen Dämmstoffe liegen in Form von Polymeren vor. Wie aus der Abbildung hervorgeht, sind alle petrochemischen Isolationsmaterialien zellular. Ein Material ist zellulär, wenn die Struktur des Materials aus Poren oder Zellen besteht. Auf der anderen Seite enthalten viele Pflanzen aufgrund ihrer Festigkeit Fasern. Daher sind fast alle biobasierten Dämmstoffe faserig (mit Ausnahme von expandiertem Kork, der zellulär ist).

Organische Dämmstoffe können entsprechend klassifiziert werden:

Andere Isolationsmaterialien

Isolationsbeispiel – Polystyrol

Im Allgemeinen ist Polystyrol ein synthetisches aromatisches Polymer, das aus dem Monomer Styrol hergestellt wird, das sich von Benzol und Ethylen ableitet, beides Erdölprodukte. Polystyrol kann fest oder geschäumt sein. Polystyrol ist ein farbloser, transparenter Thermoplast, der üblicherweise zur Herstellung von Dämmstoffen aus Schaumstoffplatten oder Wulstplatten und einer Art Schüttgutdämmung aus kleinen Polystyrolperlen verwendet wird. Polystyrolschäume bestehen zu 95-98% aus Luft. Polystyrolschäume sind gute Wärmeisolatoren und werden daher häufig als Gebäudeisolationsmaterialien verwendet, wie zum Beispiel in Isolierbetonformen und strukturisolierten Paneelbausystemen. Expandiertes (EPS) und extrudiertes Polystyrol (XPS)bestehen beide aus Polystyrol, aber EPS besteht aus kleinen Kunststoffperlen, die miteinander verschmolzen sind, und XPS beginnt als geschmolzenes Material, das aus einer Form zu Platten gepresst wird. XPS wird am häufigsten als Schaumstoffdämmung verwendet.

Schaumpolystyrol - WärmedämmungExpandiertes Polystyrol (EPS) ist ein fester und zäher geschlossenzelliger Schaum. Bau- und Konstruktionsanwendungen machen rund zwei Drittel der Nachfrage nach expandiertem Polystyrol aus. Es wird zur Dämmung von (Hohl-) Wänden, Dächern und Betonböden eingesetzt. Aufgrund seiner technischen Eigenschaften wie geringes Gewicht, Steifigkeit und Formbarkeit kann expandiertes Polystyrol in einer Vielzahl von Anwendungen eingesetzt werden, beispielsweise in Schalen, Tellern und Fischkästen.

Obwohl sowohl expandiertes als auch extrudiertes Polystyrol eine geschlossenzellige Struktur haben, sind sie für Wassermoleküle durchlässig und können nicht als Dampfsperre angesehen werden. In expandiertem Polystyrol gibt es Zwischenräume zwischen den expandierten, geschlossenzelligen Pellets, die ein offenes Netzwerk von Kanälen zwischen den gebundenen Pellets bilden. Wenn das Wasser zu Eis gefriert, dehnt es sich aus und kann dazu führen, dass Polystyrolpellets vom Schaum abbrechen.

Beispiel – Wärmeverlust durch eine Wand

Wärmeverlust durch Wand - Beispiel - BerechnungEine Hauptquelle für den Wärmeverlust eines Hauses sind Wände. Berechnen Sie die Wärmestromrate durch eine Wand mit einer Fläche von 3 mx 10 m (A = 30 m 2 ). Die Wand ist 15 cm dick (L 1 ) und besteht aus Ziegeln mit einer Wärmeleitfähigkeit von k 1 = 1,0 W / mK (schlechter Wärmeisolator). Angenommen, die Innen- und Außentemperaturen betragen 22 ° C und -8 ° C, und die Konvektionswärmeübertragungskoeffizienten an der Innen- und der Außenseite betragen h 1 = 10 W / m 2 K und h 2 = 30 W / m 2K jeweils. Beachten Sie, dass diese Konvektionskoeffizienten stark von den Umgebungs- und Innenbedingungen (Wind, Luftfeuchtigkeit usw.) abhängen.

  1. Berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese nicht isolierte Wand.
  2. Nehmen Sie nun die Wärmedämmung an der Außenseite dieser Wand an. Verwenden Sie eine 10 cm dicke Dämmung aus expandiertem Polystyrol (L 2 ) mit einer Wärmeleitfähigkeit von k 2 = 0,03 W / mK und berechnen Sie den Wärmefluss ( Wärmeverlust ) durch diese Verbundwand.

Lösung:

Wie bereits erwähnt, handelt es sich bei vielen Wärmeübertragungsprozessen um Verbundsysteme und sogar um eine Kombination aus Wärmeleitung und Konvektion . Bei diesen Verbundsystemen ist es häufig zweckmäßig, mit einem Gesamtwärmeübergangskoeffizienten zu arbeiten , der als U-Faktor bezeichnet wird . Der U-Faktor wird durch einen Ausdruck definiert, der dem Newtonschen Gesetz der Abkühlung entspricht :

U-Faktor - Gesamtwärmeübergangskoeffizient

Der Gesamtwärmeübertragungskoeffizient ist mit dem im Zusammenhang Gesamtwärmewiderstand und ist abhängig von der Geometrie des Problems.

  1. nackte Wand

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Wand und ohne Berücksichtigung der Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Wärmeverlustberechnung

Der Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 3,53 [W / m 2 K] × 30 [K] = 105,9 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 105,9 [W / m 2 ] × 30 [m 2 ] = 3177 W

  1. Verbundwand mit Wärmedämmung

Unter der Annahme eines eindimensionalen Wärmeübergangs durch die ebene Verbundwand, ohne Wärmekontaktwiderstand und ohne Berücksichtigung von Strahlung kann der Gesamtwärmeübergangskoeffizient wie folgt berechnet werden:

Gesamtwärmeübergangskoeffizient - Berechnung der Wärmedämmung

Wärmedämmung - PolystyrolschaumDer Gesamtwärmeübergangskoeffizient beträgt dann:

U = 1 / (1/10 + 0,15 / 1 + 0,1 / 0,03 + 1/30) = 0,276 W / m 2 K

Der Wärmestrom kann dann einfach wie folgt berechnet werden:

q = 0,276 [W / m 2 K] × 30 [K] = 8,28 W / m 2

Der gesamte Wärmeverlust durch diese Wand beträgt:

loss = q. A = 8,28 [W / m 2 ] × 30 [m 2 ] = 248 W

Wie zu sehen ist, bewirkt eine Zugabe eines Wärmeisolators eine signifikante Verringerung der Wärmeverluste. Es muss hinzugefügt werden, ein Hinzufügen der nächsten Schicht Wärmeisolator führt nicht zu so hohen Einsparungen. Dies ist am Wärmewiderstand besser zu erkennen, mit dem der Wärmeübergang durch Verbundwände berechnet werden kann . Die Geschwindigkeit der gleichmäßigen Wärmeübertragung zwischen zwei Oberflächen ist gleich der Temperaturdifferenz geteilt durch den gesamten Wärmewiderstand zwischen diesen beiden Oberflächen.

Wärmewiderstand - Gleichung

……………………………………………………………………………………………………………………………….

Dieser Artikel basiert auf der maschinellen Übersetzung des englischen Originalartikels. Weitere Informationen finden Sie im Artikel auf Englisch. Sie können uns helfen. Wenn Sie die Übersetzung korrigieren möchten, senden Sie diese bitte an: translations@nuclear-power.com oder füllen Sie das Online-Übersetzungsformular aus. Wir bedanken uns für Ihre Hilfe und werden die Übersetzung so schnell wie möglich aktualisieren. Danke.