Facebook Instagram Youtube Twitter

¿Qué es la pérdida de cabeza mayor? Pérdida de fricción: definición

Las principales pérdidas de carga, que están asociadas con la pérdida de energía por fricción por longitud de tubería, son importantes en el diseño de sistemas hidráulicos. Pérdida por fricción en la tubería. Ingenieria termal

Pérdida de cabeza mayor – Pérdida por fricción

Las pérdidas importantes , que están asociadas con la pérdida de energía por fricción por longitud de tubería, dependen de la velocidad del flujo, la longitud de la tubería, el diámetro de la tubería y un factor de fricción basado en la rugosidad de la tubería, y si el flujo es laminar o turbulento (es decir, el Reynolds número del flujo).

Aunque la pérdida de carga representa una pérdida de energía , no representa una pérdida de energía total del fluido. La energía total del fluido se conserva como consecuencia de la ley de conservación de la energía . En realidad, la pérdida de carga debido a la fricción produce un aumento equivalente en la energía interna (aumento de la temperatura) del fluido.

Por observación, la mayor pérdida de carga es aproximadamente proporcional al cuadrado del caudal en la mayoría de los flujos de ingeniería (flujo de tubería turbulento totalmente desarrollado).

La ecuación más común utilizada para calcular las principales pérdidas de carga en un tubo o conducto es la ecuación de Darcy-Weisbach  .

Ecuación de Darcy-Weisbach

En la dinámica de fluidos, la ecuación de Darcy-Weisbach es una ecuación fenomenológica, que relaciona la pérdida de carga principal o pérdida de presión, debido a la fricción del fluido a lo largo de una longitud determinada de tubería con la velocidad promedio. Esta ecuación es válida para un flujo monofásico totalmente desarrollado, constante e incompresible .

La ecuación de Darcy-Weisbach se puede escribir en dos formas ( forma de pérdida de presión o forma de pérdida de cabeza ). En el formulario de pérdida de cabeza se puede escribir como:

Pérdida de cabeza mayor - forma de cabeza

dónde:

  • Δh = la pérdida de carga debido a la fricción (m)
  • D = el factor de fricción de Darcy (sin unidades)
  • L = la longitud del tubo (m)
  • D = el diámetro hidráulico de la tubería D (m)
  • g = la constante gravitacional (m / s 2 )
  • V = la velocidad media del flujo V (m / s)

Resumen:

  • La pérdida de carga del sistema hidráulico se divide en dos categorías principales :
    • Pérdida de carga importante : debido a la fricción en tuberías rectas
    • Pérdida de carga menor : debido a componentes como válvulas, curvas …
  • La ecuación de Darcy se puede usar para calcular pérdidas importantes .
  • El factor de fricción para el flujo de fluido se puede determinar usando un gráfico Moody .Moody chart-min
  • El factor de fricción  para el flujo laminar es independiente de la rugosidad de la superficie interna de la tubería. f = 64 / Re
  • El factor de fricción  para el flujo turbulento depende en gran medida de la rugosidad relativa. Está determinado por la ecuación de Colebrook. Debe notarse que, en números de Reynolds muy grandes , el factor de fricción es independiente del número de Reynolds.

 

¿Por qué la pérdida de cabeza es tan importante?

Como se puede ver en la imagen, la pérdida de carga es una característica clave de cualquier sistema hidráulico. En los sistemas, en los que se debe mantener cierto caudal (por ejemplo, para proporcionar suficiente enfriamiento o transferencia de calor desde el núcleo del reactor ), el equilibrio de la pérdida de carga y la  carga añadida por una bomba determina la velocidad de flujo a través del sistema.

Diagrama característico de QH de la bomba centrífuga y de la tubería
Diagrama característico de QH de la bomba centrífuga y de la tubería
Cabezal hidráulico - Línea de grado hidráulico
Línea de grado hidráulico y líneas de cabeza total para una tubería de diámetro constante con fricción. En una tubería real hay pérdidas de energía debido a la fricción, que deben tenerse en cuenta, ya que pueden ser muy significativas.
La evaluación de la ecuación de Darcy-Weisbach proporciona información sobre los factores que afectan la pérdida de carga en una tubería.

  • Tenga en cuenta que la longitud de la tubería o el canal se duplica , la pérdida de carga por fricción resultante se duplicará .
  • A una velocidad de flujo constante y longitud de la tubería, la pérdida de carga es inversamente proporcional a la cuarta potencia de diámetro (para flujo laminar), y así reducir el diámetro de la tubería a la mitad aumenta la pérdida de carga en un factor de 16. Este es un aumento muy significativo. en pérdida de carga, y muestra por qué las tuberías de mayor diámetro conducen a requisitos de potencia de bombeo mucho más pequeños.
  • Dado que la pérdida de carga es aproximadamente proporcional al cuadrado del caudal, entonces, si el caudal se duplica , la pérdida de carga aumenta en un factor de cuatro .
  • La pérdida de carga se reduce a la mitad (para flujo laminar) cuando la viscosidad del fluido se reduce a la mitad .
Fuente: Donebythesecondlaw en Wikipedia en inglés, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4681366
Fuente: Donebythesecondlaw en Wikipedia en inglés, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=4681366

Con la excepción del factor de fricción de Darcy , cada uno de estos términos (la velocidad de flujo, el diámetro hidráulico , la longitud de una tubería) se puede medir fácilmente. El factor de fricción de Darcy tiene en cuenta las propiedades del fluido de densidad y viscosidad, junto con la rugosidad de la tubería . Este factor puede evaluarse mediante el uso de diversas relaciones empíricas, o puede leerse en gráficos publicados (por ejemplo, gráfico Moody ).

 

Factor de fricción de Darcy

Hay dos factores de fricción comunes en uso, los factores de fricción Darcy y Fanning .

El factor de fricción de Darcy es una cantidad adimensional utilizada en la ecuación de Darcy-Weisbach, para la descripción de pérdidas por fricción en tuberías o conductos, así como para el flujo de canal abierto. Esto también se llama factor de fricción de Darcy-Weisbach , coeficiente de resistencia o simplemente factor de fricción .Se ha determinado que el factor de fricción depende del número de Reynolds para el flujo y el grado de rugosidad de la superficie interna de la tubería (especialmente para el flujo turbulento ). El factor de fricción del flujo laminar es independiente de la rugosidad de la superficie interna de la tubería.
factor de fricción darcy
La sección transversal de la tubería también es importante, ya que las desviaciones de la sección transversal circular causarán flujos secundarios que aumentarán la pérdida de carga. Las tuberías y conductos no circulares generalmente se tratan utilizando el diámetro hidráulico .

Rugosidad Relativa

La cantidad utilizada para medir la rugosidad de la superficie interna de la tubería se llama rugosidad relativa , y es igual a la altura promedio de las irregularidades de la superficie (ε) dividida por el diámetro de la tubería (D).

rugosidad relativa - ecuación

, donde tanto la altura promedio de las irregularidades de la superficie como el diámetro de la tubería están en milímetros.

Si conocemos la rugosidad relativa de la superficie interna de la tubería, entonces podemos obtener el valor del factor de fricción de la Tabla Moody .

El gráfico de Moody (también conocido como diagrama de Moody) es un gráfico en forma no dimensional que relaciona el factor de fricción de Darcy , el número de Reynolds y la rugosidad relativa para un flujo completamente desarrollado en una tubería circular.

rugosidad relativa - rugosidad absoluta

Factor de fricción de Darcy para varios regímenes de flujo

La clasificación más común de los regímenes de flujo es de acuerdo con el número de Reynolds. El número de Reynolds es un número adimensional compuesto por las características físicas del flujo y determina si el flujo es laminar o turbulento . Un número creciente de Reynolds indica una turbulencia creciente del flujo. Como se puede ver en el cuadro de Moody, también el factor de fricción de Darcy depende en gran medida del régimen de flujo (es decir, del número de Reynolds).

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.