O que é perda de carga principal – perda por atrito – definição

As principais perdas de carga, associadas à perda de energia de atrito por comprimento de tubo, são importantes no projeto de sistemas hidráulicos. Perda de fricção no tubo. Engenharia Térmica

Perda de Cabeça Maior – Perda por Fricção

As principais perdas associadas à perda de energia de atrito por comprimento do tubo dependem da velocidade do fluxo, comprimento do tubo, diâmetro do tubo e um fator de atrito baseado na rugosidade do tubo, e se o fluxo é laminar ou turbulento (ou seja, Reynolds número do fluxo).

Embora a perda de carga represente uma perda de energia , ela não representa uma perda de energia total do fluido. A energia total do fluido conserva como conseqüência da lei de conservação de energia . Na realidade, a perda de carga devido ao atrito resulta em um aumento equivalente na energia interna (aumento da temperatura) do fluido.

Pela observação, a maior perda de carga é aproximadamente proporcional ao quadrado da vazão na maioria dos fluxos de engenharia (vazão de tubulação turbulenta e totalmente desenvolvida).

A equação mais comum usada para calcular as principais perdas de carga em um tubo ou duto é a equação de Darcy-Weisbach  .

Equação de Darcy-Weisbach

Na dinâmica de fluidos, a equação de Darcy-Weisbach é uma equação fenomenológica, que relaciona a principal perda de carga ou perda de pressão devido ao atrito do fluido ao longo de um determinado comprimento do tubo à velocidade média. Esta equação é válida para fluxo monofásico totalmente desenvolvido, estável e incompressível .

A equação de Darcy-Weisbach pode ser escrita em duas formas ( forma perda de pressão ou de formulário perda de carga ). No formulário de perda de cabeça pode ser escrito como:

Perda de Cabeça Maior - forma da cabeça

Onde:

  • Δh = perda de carga devida ao atrito (m)
  • D = fator de atrito de Darcy (sem unidade)
  • L = comprimento do tubo (m)
  • D = diâmetro hidráulico do tubo D (m)
  • g = constante gravitacional (m / s 2 )
  • V = velocidade média do fluxo V (m / s)

 

Resumo:

  • A perda de carga do sistema hidráulico é dividida em duas categorias principais :
    • Perda de Cabeça Maior – devido ao atrito em tubos retos
    • Menor perda de carga – devido a componentes como válvulas, curvas…
  • A equação de Darcy pode ser usada para calcular grandes perdas .
  • fator de atrito para o fluxo de fluido pode ser determinado usando um gráfico Moody .Moody chart-min
  • O fator de atrito  para o fluxo laminar é independente da rugosidade da superfície interna do tubo. f = 64 / Re
  • O fator de atrito  para escoamento turbulento depende fortemente da rugosidade relativa. É determinado pela equação de Colebrook. Deve-se notar que, em números muito grandes de Reynolds , o fator de atrito é independente do número de Reynolds.

 

Por que a perda de cabeça é muito importante?

Como pode ser visto na figura, a perda de carga é a principal característica de qualquer sistema hidráulico. Nos sistemas em que uma certa vazão deve ser mantida (por exemplo, para fornecer refrigeração ou transferência de calor suficiente a partir do núcleo do reator ), o equilíbrio da perda de carga e da  carga adicionada por uma bomba determina a vazão através do sistema.

Diagrama característico de QH da bomba centrífuga e do gasoduto
Diagrama característico de QH da bomba centrífuga e do gasoduto
Cabeça Hidráulica - Linha Hidráulica
Linha de classificação hidráulica e linhas de cabeçote total para um tubo de diâmetro constante com atrito. Em uma tubulação real, há perdas de energia devido ao atrito – elas devem ser levadas em consideração, pois podem ser muito significativas.

A avaliação da equação de Darcy-Weisbach fornece informações sobre os fatores que afetam a perda de carga em um oleoduto.

  • Considere que o comprimento do tubo ou canal é dobrado , a perda de carga de atrito resultante dobrará .
  • Em vazão constante e comprimento do tubo, a perda de carga é inversamente proporcional à quarta potência de diâmetro (para fluxo laminar) e, assim, reduzir o diâmetro do tubo pela metade aumenta a perda de carga em um fator de 16. Isso é um aumento muito significativo na perda de carga e mostra por que tubos de diâmetro maior levam a requisitos de energia de bombeamento muito menores.
  • Como a perda de carga é aproximadamente proporcional ao quadrado da vazão, então se a vazão for duplicada , a perda de carga aumentará em um fator de quatro .
  • perda de carga é reduzida pela metade (para fluxo laminar) quando a viscosidade do fluido é reduzida pela metade .
Fonte: Donebythesecondlaw no idioma inglês Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4681366
Fonte: Donebythesecondlaw no idioma inglês Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=4681366

Com exceção do fator de atrito de Darcy , cada um desses termos (velocidade do fluxo, diâmetro hidráulico , comprimento de um tubo) pode ser facilmente medido. O fator de atrito de Darcy leva em consideração as propriedades de densidade e viscosidade do fluido, além da rugosidade do tubo . Esse fator pode ser avaliado pelo uso de várias relações empíricas ou pode ser lido em gráficos publicados (por exemplo, gráfico Moody ).

Fator de atrito de Darcy

Existem dois fatores de atrito comuns em uso, os fatores de atrito Darcy e Fanning .

O fator de atrito de Darcy é uma quantidade adimensional usada na equação de Darcy-Weisbach, para a descrição de perdas por atrito em tubulação ou duto, bem como para fluxo em canal aberto. Isso também é chamado de fator de atrito de Darcy-Weisbach , coeficiente de resistência ou simplesmente fator de atrito .Determinou-se que o fator de atrito depende do número de Reynolds para o fluxo e do grau de rugosidade da superfície interna do tubo (especialmente para fluxo turbulento ). O fator de atrito do fluxo laminar é independente da rugosidade da superfície interna do tubo.
fator de atrito darcy
A seção transversal do tubo também é importante, pois os desvios da seção circular causarão fluxos secundários que aumentam a perda de carga. Tubos e dutos não circulares são geralmente tratados usando o diâmetro hidráulico .

Rugosidade relativa

A quantidade usada para medir a rugosidade da superfície interna do tubo é chamada de rugosidade relativa e é igual à altura média das irregularidades da superfície (ε) dividida pelo diâmetro do tubo (D).

rugosidade relativa - equação

, onde as irregularidades médias da superfície da altura e o diâmetro do tubo estão em milímetros.

Se conhecermos a rugosidade relativa da superfície interna do tubo, podemos obter o valor do fator de atrito no Gráfico Moody .

O gráfico Moody (também conhecido como diagrama Moody) é um gráfico em forma não dimensional que relaciona o fator de atrito de Darcy , o número de Reynolds e a rugosidade relativa do fluxo totalmente desenvolvido em um tubo circular.

rugosidade relativa - rugosidade absoluta

 

Fator de atrito de Darcy para vários regimes de fluxo

A classificação mais comum dos regimes de fluxo é de acordo com o número de Reynolds. O número de Reynolds é um número adimensional composto pelas características físicas do fluxo e determina se o fluxo é laminar ou turbulento . Um número crescente de Reynolds indica uma crescente turbulência do fluxo. Como pode ser visto no gráfico Moody, também o fator de atrito de Darcy é altamente dependente do regime de fluxo (ou seja, do número de Reynolds).

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: [email protected] ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.