## Planck’s Law – Planck’s Hypothesis

The Stefan–Boltzmann law determines the total blackbody emissive power, E_{b}, which is the sum of the radiation emitted over all wavelengths. Planck’s law describes the spectrum of blackbody radiation, which depends only on the object’s temperature and relates the spectral blackbody emissive power, E_{bλ}. This law is named after a German theoretical physicist Max Planck, who proposed it in 1900. **Planck’s law** is a pioneering result of modern physics and quantum theory. **Planck’s hypothesis** that energy is radiated and absorbed in **discrete “quanta”** (or energy packets) precisely matched the observed patterns of blackbody radiation and resolved the ultraviolet catastrophe.

Using this hypothesis, Planck showed that the spectral radiance of a body for frequency ν at absolute temperature T is given by:

is the spectral radiance (the power per unit solid angle and per unit of area normal to the propagation) density of frequency*B*_{ν}(v,T)*ν*radiation per unit frequency at thermal equilibrium at temperature T**h**is the Planck constant**c**is the speed of light in a vacuum**k**is the Boltzmann constant_{B}is the frequency of the electromagnetic radiation*ν***T**is the absolute temperature of the body

The **Planck’s law** has the following important features:

- The emitted radiation varies continuously with wavelength.
- At any wavelength the magnitude of the emitted radiation increases with increasing temperature.
- The spectral region in which the radiation is concentrated depends on temperature, with comparatively more radiation appearing at shorter wavelengths as the temperature increases (
**Wien’s Displacement Law**).

## Blackbody Radiation

It is known that the amount of radiation energy emitted from a surface at a given wavelength depends on the **material** of the body and the condition of its **surface** as well as the surface **temperature**. Therefore, various materials emit different amounts of radiant energy even whhen they are at the same temperature. A **body** that emits the **maximum amount** of heat for its absolute temperature is called a **blackbody**.

A **blackbody** is an idealized physical body, that has specific properties. By definition, a black body in thermal equilibrium has an **emissivity** of ** ε = 1.0**. Real objects do not radiate as much heat as a perfect black body. They radiate less heat than a black body and therefore are called gray bodies.

The surface of a blackbody emits thermal radiation at the rate of approximately 448 watts per square metre at room temperature (25 °C, 298.15 K). Real objects with emissivities less than 1.0 (e.g. copper wire) emit radiation at correspondingly lower rates (e.g. 448 x 0.03 = 13.4 W/m^{2}). **Emissivity** plays important role in heat transfer problems. For example, solar heat collectors incorporate selective surfaces that have very low emissivities. These collectors waste very little of the solar energy through emission of thermal radiation.

Since the **absorptivity** and the **emissivity** are interconnected by the **Kirchhoff’s Law of thermal radiation**, a **blackbody** is also a perfect absorber of electromagnetic radiation.

**Kirchhoff’s Law of thermal radiation**:

*For an arbitrary body emitting and absorbing thermal radiation in thermodynamic equilibrium, the emissivity is equal to the absorptivity.*

**emissivity ε = absorptivity α**

A **blackbody** absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. Its **absorptivity** is therefore equal to unity, which is also the highest possible value. That is, a **blackbody** is a **perfect absorber **(and a **perfect emitter**).

Note that visible radiation occupies a very narrow band of the spectrum from 0.4 to 0.76 nm, we cannot make any judgments about the blackness of a surface on the basis of visual observations. For example, consider white paper that reflects visible light and thus appear white. On the other hand it is essentially black for infrared radiation (**absorptivity α = 0.94**) since they strongly absorb long-wavelength radiation.

We hope, this article, **Planck’s Law – Planck’s Hypothesis**, helps you. If so, **give us a like** in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about thermal engineering.