Facebook Instagram Youtube Twitter

O que é eficiência térmica – Brayton Cycle – Definition

A eficiência térmica do ciclo de Brayton, para o gás ideal, pode ser expressa em termos de temperatura ou razão de pressão. Em geral, a taxa de pressão é o parâmetro principal. Engenharia Térmica

Eficiência térmica do ciclo de Brayton

Em geral, a eficiência térmica , η th , de qualquer motor de calor é definida como a razão entre o trabalho que faz, W , para o calor de entrada a uma temperatura elevada, Q H .

fórmula de eficiência térmica - 1

eficiência térmica , η th , representa a fração de calor , H , que é convertida em trabalho . Como a energia é conservada de acordo com a primeira lei da termodinâmica e a energia não pode ser convertida para funcionar completamente, a entrada de calor, Q H , deve ser igual ao trabalho realizado, W, mais o calor que deve ser dissipado como calor residual Q C no meio Ambiente. Portanto, podemos reescrever a fórmula da eficiência térmica como:

fórmula de eficiência térmica - 2

Takaishi, Tatsuo; Numata, Akira; Nakano, Ryouji; Sakaguchi, Katsuhiko (março de 2008).
Takaishi, Tatsuo; Numata, Akira; Nakano, Ryouji; Sakaguchi, Katsuhiko (março de 2008). “Abordagem para motores a diesel e gás de alta eficiência” (PDF). Revisão técnica Mitsubishi Heavy Industries. 45 (1). Página visitada em 2011-02-04.

Essa é uma fórmula muito útil, mas aqui expressamos a eficiência térmica usando a primeira lei em termos de entalpia .

Para calcular a eficiência térmica do ciclo de Brayton (compressor único e turbina única), os engenheiros usam a primeira lei da termodinâmica em termos de entalpia e não em energia interna.

A primeira lei em termos de entalpia é:

dH = dQ + Vdp

Nesta equação, o termo Vdp é um trabalho de processo de fluxo. Este trabalho,   Vdp , é usado para sistemas de fluxo aberto como uma turbina ou uma bomba na qual existe um “dp” , ou seja, mudança de pressão. Não há alterações no volume de controle . Como pode ser visto, essa forma de lei simplifica a descrição da transferência de energia .

Existem expressões em termos de variáveis ​​mais familiares, como temperatura e pressão :

dH = C p dT + V (1-aT) dp

Onde p é a capacidade calorífica a pressão constante e α é o coeficiente de expansão térmica (cúbico). Para o gás ideal αT = 1 e, portanto:

dH = C p dT

A pressão constante , a mudança de entalpia é igual à energia transferida do ambiente através do aquecimento:

Processo isobárico (Vdp = 0):

dH = dQ → Q = H 3 – H 2   → H 3 – H 2 = P (T 3 – T 2 )

Na entropia constante , ou seja, no processo isentrópico, a mudança de entalpia é igual ao trabalho do processo de fluxo realizado no ou pelo sistema:

Processo isentrópico (dQ = 0):

dH = Vdp → W = H 4 – H 3     → H 4 – H 3 = p (T 4 – T 3 )

entalpia pode ser transformada em uma variável intensiva ou específica dividindo-se pela massa . Os engenheiros usam mais a entalpia específica na análise termodinâmica do que a própria entalpia.

Agora, vamos assumir o ciclo de Brayton ideal que descreve o funcionamento de um motor de calor com pressão constante. Os modernos motores de turbina a gás e os motores a jato de respiração também seguem o ciclo de Brayton. Esse ciclo consiste em quatro processos termodinâmicos:

  1. Ciclo de Brayton - diagrama de Ts
    Ciclo de Brayton – diagrama de Ts

    compressão isentrópica – o ar ambiente é aspirado para o compressor, onde é pressurizado (1 → 2). O trabalho necessário para o compressor é dado por C = H 2 – H 1 .

  2. adição de calor isobárico – o ar comprimido passa por uma câmara de combustão, onde o combustível é queimado e o ar ou outro meio é aquecido (2 → 3). É um processo de pressão constante, já que a câmara está aberta para entrar e sair. O calor líquido adicionado é dado por add = H 3 – H 2
  3. expansão isentrópica – o ar aquecido e pressurizado se expande na turbina, gasta sua energia. O trabalho realizado pela turbina é dado por T = H 4 – H 3
  4. rejeição de calor isobárica – o calor residual deve ser rejeitado para fechar o ciclo. O calor líquido rejeitado é dado por re = H 4 – H 1

Como pode ser visto, podemos descrever e calcular completamente esses ciclos (da mesma forma para o ciclo de Rankine) usando entalpias.

Eficiência térmica – Ciclo de Brayton

A eficiência térmica desse ciclo simples de Brayton, para o gás ideal, agora pode ser expressa em termos de temperatura:

eficiência térmica do ciclo de Brayton

Onde

Relação de Pressão – Ciclo de Brayton – Turbina a Gás

eficiência térmica em termos da razão de pressão do compressor (PR = p 2 / p 1 ), que é o parâmetro comumente usado:

eficiência térmica - ciclo de brayton - razão de pressão - equação

eficiência térmica - ciclo de brayton - razão de pressãoEm geral, aumentar a taxa de pressão é a maneira mais direta de aumentar a eficiência térmica geral de um ciclo de Brayton, porque o ciclo se aproxima do ciclo de Carnot.

De acordo com o princípio de Carnot, é possível obter maiores eficiências aumentando a temperatura do gás.

Mas também há limites nas relações de pressão que podem ser usadas no ciclo. A temperatura mais alta do ciclo ocorre no final do processo de combustão e é limitada pela temperatura máxima que as pás da turbina podem suportar. Como de costume, considerações metalúrgicas (cerca de 1700 K) impõem limites superiores à eficiência térmica.

Turbina a Gás - Relação de Pressão - Eficiência Térmica
Ciclos Brayton ideais com diferentes taxas de pressão e a mesma temperatura de entrada da turbina.

Considere o efeito da taxa de pressão do compressor na eficiência térmica quando a temperatura de entrada da turbina estiver restrita à temperatura máxima permitida. Existem dois diagramas Ts dos ciclos de Brayton com a mesma temperatura de entrada da turbina, mas diferentes proporções de pressão do compressor na imagem. Como pode ser visto para uma temperatura de entrada de turbina fixa, a produção líquida de trabalho por ciclo (W net = W T – W C ) diminui com a razão de pressão ( Ciclo A ). Mas o ciclo A tem a maior eficiência.

Por outro lado, o Ciclo B tem uma maior produção líquida de trabalho por ciclo (área delimitada no diagrama) e, portanto, o maior trabalho líquido desenvolvido por unidade de fluxo de massa. O trabalho produzido pelo ciclo vezes uma taxa de fluxo de massa através do ciclo é igual à potência produzida pela turbina a gás.

Portanto, com menos produção de trabalho por ciclo (Ciclo A), é necessária uma taxa de fluxo de massa maior (portanto, um sistema maior ) para manter a mesma produção de energia, o que pode não ser econômico. Essa é a principal consideração no projeto de turbinas a gás, pois aqui os engenheiros devem equilibrar a eficiência térmica e a compactação. Nos projetos mais comuns, a razão de pressão de uma turbina a gás varia de cerca de 11 a 16.

Melhoria da eficiência térmica – Brayton Cycle

Existem vários métodos, como pode ser melhorada a eficiência térmica do ciclo de Brayton. Assumindo que a temperatura máxima seja limitada por considerações metalúrgicas, esses métodos são:

  • Aumento da relação de pressão
  • Regeneração de calor
  • Reheat – Reheaters
  • Compressão com Intercooling
Ciclo de Brayton - reaquecimento - intercooling - regeneração
Diagrama Ts do ciclo de Brayton com reaquecimento, inter-resfriamento e regeneração de calor

Reaquecimento, Intercooling e Regeneração no Ciclo de Brayton

Como foi discutido, o reaquecimento e o inter-resfriamento são complementares à regeneração de calor . Por si só, eles não necessariamente aumentariam a eficiência térmica; no entanto, quando o inter-resfriamento ou o reaquecimento são usados ​​em conjunto com a regeneração de calor, um aumento significativo na eficiência térmica pode ser alcançado e a produção líquida de trabalho também é aumentada. Isso requer uma turbina a gás com dois estágios de compressão e dois estágios de turbina.

Eficiência isentrópica – turbina, compressor

A maioria dos dispositivos de fluxo constante (turbinas, compressores, bicos) opera em condições adiabáticas , mas não são verdadeiramente isentrópicos, mas são idealizados como isentrópicos para fins de cálculo. Definimos os parâmetros η T ,  η C , η N , como uma razão entre o trabalho real realizado pelo dispositivo e o trabalho por dispositivo quando operado em condições isentrópicas (no caso de turbinas). Essa relação é conhecida como eficiência isentrópica de turbina / compressor / bico .

Veja também: Irreversibilidade de processos naturais

Esses parâmetros descrevem com que eficiência uma turbina, compressor ou bico se aproxima de um dispositivo isentrópico correspondente. Este parâmetro reduz a eficiência geral e a produção do trabalho. Para turbinas, o valor de η T é tipicamente de 0,7 a 0,9 (70-90%).

Eficiência isentrópica - equações

Compressão isentrópica vs. adiabática

Expansão isentrópica vs. adiabática
O processo isentrópico é um caso especial de processos adiabáticos. É um processo adiabático reversível. Um processo isentrópico também pode ser chamado de processo de entropia constante.

……………………………………………………………………………………………………………………………….

Este artigo é baseado na tradução automática do artigo original em inglês. Para mais informações, consulte o artigo em inglês. Você pode nos ajudar. Se você deseja corrigir a tradução, envie-a para: translations@nuclear-power.com ou preencha o formulário de tradução on-line. Agradecemos sua ajuda, atualizaremos a tradução o mais rápido possível. Obrigado.