Facebook Instagram Youtube Twitter

Qu’est-ce que l’énergie cinétique relativiste – Définition

Lorsque la vitesse d’un objet s’approche de la vitesse de la lumière, l’énergie cinétique relativiste se rapproche de l’infini. La formule d’énergie cinétique relativiste est basée sur la relation relativiste énergie-moment. Génie thermique

Energie cinétique relativiste

énergie cinétique relativiste
Lorsque la vitesse d’un objet s’approche de la vitesse de la lumière, l’énergie cinétique relativiste se rapproche de l’infini. Il est causé par le facteur de Lorentz, qui approche l’infini pour v → c.

Les relations précédentes entre le travail et l’énergie cinétique sont basées sur les lois du mouvement de Newton . Lorsque nous généralisons ces lois selon le principe de relativité, nous avons besoin d’une généralisation correspondante de l’équation de l’énergie cinétique . Si la vitesse d’un objet est proche de la vitesse de la lumière, il est nécessaire d’utiliser une mécanique relativiste pour calculer son énergie cinétique .

En mécanique classique , l’énergie cinétique et la quantité de mouvement sont exprimées par:

Moment classique et énergie cinétique

La dérivation de ses relations relativistes est basée sur la relation relativiste énergie-impulsion:

relation énergie-moment

On peut en déduire que l’énergie cinétique relativiste et l’élan relativiste sont:

énergie cinétique relativiste - formule

Le premier terme ( mc 2 ) de l’ énergie cinétique relativiste augmente avec la vitesse v de la particule. Le second terme ( mc 2 ) est constant; elle est appelée énergie de repos  (masse au repos) de la particule et représente une forme d’énergie qu’une particule possède même à une vitesse nulle . Lorsque la vitesse d’un objet s’approche de la vitesse de la lumière, l’ énergie cinétique se rapproche de l’infini . Il est causé par le facteur de Lorentz , qui approche l’infini pour v → c . Par conséquent, la vitesse de la lumière ne peut être atteinte par aucune particule massive.

Le premier terme (ɣmc 2 ) est connu comme l’ énergie totale E de la particule, car il est égal à l’énergie de repos plus l’énergie cinétique:

E = K + mc 2

Pour une particule au repos, c’est-à-dire que K est nul, l’énergie totale est donc son énergie de repos:

E = mc 2

C’est l’un des résultats frappants de la théorie de la relativité d’Einstein : la masse et l’énergie sont équivalentes et convertibles l’ une dans l’autre. L’équivalence de la masse et de l’énergie est décrite par la célèbre formule d’Einstein E = mc 2 . Ce résultat a été confirmé à maintes reprises expérimentalement en physique nucléaire et élémentaire des particules. Par exemple, voir Production de paires positrons-électrons ou Conservation de l’énergie dans les réactions nucléaires .

Voir aussi: Messe relativiste

Exemple: énergie cinétique du proton

Qu'est-ce que le proton - physiqueUn proton ( m = 1,67 x 10 -27 kg ) se déplace à une vitesse v = 0,9900c = 2,968 x 10 8 m / s . Quelle est son énergie cinétique ?

Selon un calcul classique, qui n’est pas correct, on obtiendrait:

K = 1 / 2mv 2 = ½ x (1,67 x 10 -27 kg) x (2,968 x 10 8 m / s) 2 = 7,355 x 10 -11 J

Avec la correction relativiste, l’énergie cinétique relativiste est égale à:

K = (ɣ – 1) mc 2

où le facteur de Lorentz

ɣ = 7,089

par conséquent

K = 6,089 x (1,67 x 10 -27 kg) x (2,9979 x 10 8 m / s) 2 = 9,139 x 10 -10 J = 5,701 GeV

C’est environ 12 fois plus d’ énergie que dans le calcul classique. Selon cette relation, une accélération d’un faisceau de protons à 5,7 GeV nécessite des énergies qui sont dans l’ordre différent.

……………………………………………………………………………………………………………………………….

Cet article est basé sur la traduction automatique de l’article original en anglais. Pour plus d’informations, voir l’article en anglais. Pouvez vous nous aider Si vous souhaitez corriger la traduction, envoyez-la à l’adresse: [email protected] ou remplissez le formulaire de traduction en ligne. Nous apprécions votre aide, nous mettrons à jour la traduction le plus rapidement possible. Merci