Facebook Instagram Youtube Twitter

¿Qué es la energía cinética? Definición

La energía cinética, K, se define como la energía almacenada en un objeto debido a su movimiento. Se llama energía cinética, de la palabra griega kinetikos – movimiento. Ingenieria termal

¿Qué es la energía cinética?

conservación de péndulo de energía mecánica

La energía cinética, K , se define como la energía almacenada en un objeto debido a su movimiento. Un objeto en movimiento tiene la capacidad de hacer trabajo y, por lo tanto, se puede decir que tiene energía. Se llama energía cinética, de la palabra griega kinetikos, que significa “movimiento”.

La energía cinética depende de la velocidad de un objeto y es la capacidad de un objeto en movimiento para trabajar en otros objetos cuando choca con ellos. Por otro lado, la energía cinética de un objeto representa la cantidad de energía requerida para aumentar la velocidad del objeto desde el reposo (v = 0) hasta su velocidad final. La energía cinética también depende linealmente de la masa, que es una medida numérica de la inercia del objeto y la medida de la resistencia de un objeto a la aceleración cuando se aplica una fuerza.

Definimos la cantidad:

K = ½ mv 2

ser la energía cinética traslacional del objeto. Debe agregarse, se llama energía cinética “traslacional” para distinguirla de la energía cinética rotacional.

 

Conservación de la energía mecánica.

Primero se declaró el principio de Conservación de la Energía Mecánica :

La energía mecánica total (definida como la suma de su potencial y energías cinéticas) de una partícula sobre la que actúan solo fuerzas conservadoras es constante .

ejemplo de conservación de energía mecánica

Ver también: Conservación de la energía mecánica.

Un sistema aislado es aquel en el que ninguna fuerza externa causa cambios de energía. Si solo las fuerzas conservadoras actúan sobre un objeto y U es la función de energía potencial para la fuerza conservadora total, entonces

mech = U + K

La energía potencial, U , depende de la posición de un objeto sometido a una fuerza conservadora.

ecuación de energía potencial

Se define como la capacidad del objeto para hacer trabajo y aumenta a medida que el objeto se mueve en la dirección opuesta a la dirección de la fuerza.

La energía potencial asociada con un sistema que consiste en la Tierra y una partícula cercana es la  energía potencial gravitacional .

ecuación de energía potencial gravitacional

La energía cinética, K , depende de la velocidad de un objeto y es la capacidad de un objeto en movimiento para trabajar en otros objetos cuando choca con ellos.

 K = ½ mv 2

La definición mencionada anteriormente ( mech = U + K ) supone que el sistema está libre de fricción y otras fuerzas no conservativas . La diferencia entre una fuerza conservadora y una no conservadora es que cuando una fuerza conservadora mueve un objeto de un punto a otro, el trabajo realizado por la fuerza conservadora es independiente del camino.

En cualquier situación real, las fuerzas de fricción y otras fuerzas no conservativas están presentes, pero en muchos casos sus efectos en el sistema son tan pequeños que el principio de conservación de la energía mecánica puede usarse como una aproximación justa. Por ejemplo, la fuerza de fricción es una fuerza no conservativa, porque actúa para reducir la energía mecánica en un sistema.

Tenga en cuenta que las fuerzas no conservativas no siempre reducen la energía mecánica. Una fuerza no conservadora cambia la energía mecánica, hay fuerzas que aumentan la energía mecánica total, como la fuerza proporcionada por un motor o motor, también es una fuerza no conservativa.

Bloque deslizándose por una pendiente inclinada sin fricción

El bloque de 1 kg comienza a una altura H (digamos 1 m) sobre el suelo, con energía potencial mgH y energía cinética que es igual a 0. Se desliza hacia el suelo (sin fricción) y llega sin energía potencial y energía cinética. K = ½ mv 2 . Calcule la velocidad del bloque en el suelo y su energía cinética.

mech = U + K = constante

=> ½ mv 2 = mgH

=> v = √2gH = 4.43 m / s

=> K 2 = ½ x 1 kg x (4.43 m / s) 2 = 19.62 kg.m 2 .s -2 = 19.62 J

Péndulo

conservación de péndulo de energía mecánicaSuponga un péndulo (bola de masa m suspendida en una cuerda de longitud L que hemos levantado para que la bola esté a una altura H <L por encima de su punto más bajo en el arco de su movimiento de cuerda estirada. El péndulo está sujeto al conservador fuerza gravitacional donde las fuerzas de fricción como el arrastre de aire y la fricción en el pivote son insignificantes.

Lo liberamos del reposo. ¿Qué tan rápido va en la parte inferior?

conservación de péndulo de energía mecánica2

El péndulo alcanza la mayor energía cinética y la menor energía potencial cuando está en posición vertical , porque tendrá la mayor velocidad y estará más cerca de la Tierra en este punto. Por otro lado, tendrá la menor energía cinética y la mayor energía potencial en las posiciones extremas de su oscilación, porque tiene velocidad cero y está más lejos de la Tierra en estos puntos.

Si la amplitud se limita a pequeñas oscilaciones, el período T de un péndulo simple, el tiempo necesario para un ciclo completo, es:

período-de-péndulo-conservación-de-energía

donde L es la longitud del péndulo yg es la aceleración local de la gravedad. Para columpios pequeños, el período de columpio es aproximadamente el mismo para columpios de diferentes tamaños. Es decir,  el período es independiente de la amplitud .

Energía cinética relativista

energía cinética relativista
A medida que la velocidad de un objeto se acerca a la velocidad de la luz, la energía cinética relativista se acerca al infinito. Es causada por el factor Lorentz, que se acerca al infinito para v → c.

La relación previa entre el trabajo y la energía cinética se basa en las leyes del movimiento de Newton . Cuando generalizamos estas leyes de acuerdo con el principio de relatividad, necesitamos una generalización correspondiente de la ecuación para la energía cinética . Si la velocidad de un objeto está cerca de la velocidad de la luz, es necesario utilizar una mecánica relativista para calcular su energía cinética .

En mecánica clásica , la energía cinética y el momento se expresan como:

momento clásico y energía cinética

La derivación de sus relaciones relativistas se basa en la relación relativista energía-momento:

relación energía-momento

Se puede derivar, la energía cinética relativista y el momento relativista son:

energía cinética relativista - fórmula

El primer término ( ɣmc 2 ) de la energía cinética relativista aumenta con la velocidad v de la partícula. El segundo término ( mc 2 ) es constante; Se llama energía en reposo  (masa en reposo) de la partícula, y representa una forma de energía que tiene una partícula incluso cuando está a velocidad cero . Cuando la velocidad de un objeto se acerca a la velocidad de la luz, la energía cinética se acerca al infinito . Es causada por el factor Lorentz , que se acerca al infinito para v → c . Por lo tanto, la velocidad de la luz no puede ser alcanzada por ninguna partícula masiva.

El primer término (ɣmc 2 ) se conoce como la energía total E de la partícula, porque es igual a la energía en reposo más la energía cinética:

E = K + mc 2

Para una partícula en reposo, es decir, K es cero, por lo que la energía total es su energía en reposo:

E = mc 2

Este es uno de los resultados sorprendentes de la teoría de la relatividad de Einstein es que la masa y la energía son equivalentes y convertibles una en la otra. La famosa fórmula E = mc 2 describe la equivalencia de la masa y la energía . Este resultado ha sido confirmado experimentalmente innumerables veces en física de partículas nucleares y elementales. Por ejemplo, vea Producción de pares de positrones-electrones o Conservación de energía en reacciones nucleares .

Ver también: masa relativista

Ejemplo: energía cinética de protón

¿Qué es el protón?Un protón ( m = 1.67 x 10 -27 kg ) viaja a una velocidad v = 0.9900c = 2.968 x 10 8 m / s . ¿Cuál es su energía cinética ?

Según un cálculo clásico, que no es correcto, obtendríamos:

K = 1 / 2mV 2 = ½ x (1,67 x 10 -27 kg) x (2.968 x 10 8 m / s) 2 = 7,355 x 10 -11 J

Con la corrección relativista, la energía cinética relativista es igual a:

K = (ɣ – 1) mc 2

donde el factor de Lorentz

ɣ = 7.089

por lo tanto

K = 6.089 x (1.67 x 10 -27 kg) x (2.9979 x 10 8 m / s) 2 = 9.139 x 10-10 J = 5.701 GeV

Esto es aproximadamente 12 veces más energía que en el cálculo clásico. De acuerdo con esta relación, una aceleración de un haz de protones a 5.7 GeV requiere energías que son diferentes en el orden.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la primera ley de la termodinámica? Definición

dEint = dQ – dW. Esta es la primera ley de la termodinámica (primera ley) y es el principio de conservación de la energía. Una de las propiedades más maravillosas de la ingeniería. Ingenieria termal

Primera ley de la termodinámica

El aumento de la energía interna de un sistema cerrado es igual al calor suministrado al sistema menos el trabajo realizado por él.

IntE int = Q – W

Esta es la primera ley de la termodinámica y es el principio de conservación de la energía , lo que significa que la energía puede ser creada ni destruida , sino más bien transforma en diversas formas como se está estudiando el fluido dentro del volumen de control.

Es la ley más importante para el análisis de la mayoría de los sistemas y la que cuantifica cómo se transforma la energía térmica en otras formas de energía . De ello se deduce que las máquinas de movimiento perpetuo del primer tipo son imposibles.

Principio de Conservación de Energía

Una de las propiedades más maravillosas del universo es que la energía puede transformarse de un tipo a otro y transferirse de un objeto a otro. Además, cuando se transforma de un tipo a otro y se transfiere de un objeto a otro, la cantidad total de energía es siempre la misma . Es una de las propiedades elementales del universo.

En termodinámica, el concepto de energía se amplía para tener en cuenta otros cambios observados, y el principio de conservación de la energía se extiende para incluir una amplia variedad de formas en que los sistemas interactúan con su entorno. Las únicas formas en que se puede cambiar la energía de un sistema cerrado son mediante la transferencia de energía por trabajo o por calor . Además, según los experimentos de Joule y otros, un aspecto fundamental del concepto de energía es que la energía se conserva. Este principio se conoce como  la primera ley de la termodinámica . La primera ley de la termodinámica se puede escribir en varias formas:

En palabras:

primera ley de la termodinámica en palabras

conservación de energía en termodinámica
Diseño físico de los cuatro dispositivos principales utilizados en el ciclo de Rankine y las transferencias de energía básicas.

Forma de ecuación:

IntE int = Q – W

donde int representa la energía interna del material, que depende solo del estado del material (temperatura, presión y volumen). Q es el calor neto agregado al sistema y W es el trabajo neto realizado por el sistema. Debemos ser cuidadosos y consistentes al seguir las convenciones de signos para Q y W. Como W en la ecuación es el trabajo realizado por el sistema, entonces si el trabajo se realiza en el sistema, W será negativo y E int aumentará.

Del mismo modo, Q es positivo para el calor agregado al sistema, por lo que si el calor abandona el sistema, Q es negativo. Esto nos dice lo siguiente: la energía interna de un sistema tiende a aumentar si el sistema absorbe calor o si se realiza un trabajo positivo en el sistema. Por el contrario, la energía interna tiende a disminuir si el sistema pierde calor o si se realiza un trabajo negativo en el sistema. Debe agregarse que Q y W dependen de la ruta, mientras que E int es independiente de la ruta.

Forma diferencial:

dE int = dQ – dW

La energía interna E int de un sistema tiende a aumentar si se agrega energía como calor Q y tiende a disminuir si se pierde energía como trabajo W realizado por el sistema.

Primera ley en términos de entalpía dH = dQ + Vdp

La entalpía se define para ser la suma de la energía interna E más el producto de la presión p y el volumen V . En muchos análisis termodinámicos aparece la suma de la energía interna U y el producto de la presión py el volumen V, por lo tanto, es conveniente dar a la combinación un nombre, entalpía y un símbolo distintivo, H.

H = U + pV

Ver también: entalpía

La primera ley de la termodinámica en términos de entalpía nos muestra por qué los ingenieros usan la entalpía en ciclos termodinámicos (por ejemplo, el ciclo de Brayton o el ciclo de Rankine ).

La forma clásica de la ley es la siguiente ecuación:

dU = dQ – dW

En esta ecuación, dW es igual a dW = pdV y se conoce como el trabajo límite .

Como H = U + pV , entonces dH = dU + pdV + Vdp y sustituimos dU = dH – pdV – Vdp en la forma clásica de la ley:dH – pdV – Vdp = dQ – pdV

Obtenemos la ley en términos de entalpía:

dH = dQ + Vdp

o

dH = TdS + Vdp

En esta ecuación, el término Vdp es un proceso de flujo de trabajo. Este trabajo,   Vdp , se utiliza para sistemas de flujo abierto como una turbina o una bomba en la que hay un “dp” , es decir, un cambio de presión. No hay cambios en el volumen de control . Como puede verse, esta forma de ley simplifica la descripción de la transferencia de energía . A presión constante , el cambio de entalpía es igual a la energía transferida del ambiente a través del calentamiento:

Proceso isobárico (Vdp = 0):

dH = dQ            Q = H 2 – H 1

En una entropía constante , es decir, en un proceso isentrópico, el cambio de entalpía es igual al trabajo del proceso de flujo realizado en o por el sistema:

Proceso isentrópico (dQ = 0):

dH = Vdp            W = H 2 – H 1

Es obvio, será muy útil en el análisis de los dos ciclos termodinámicos utilizados en la ingeniería de energía, es decir, en el ciclo de Brayton y el ciclo de Rankine.

Ejemplo: primera ley de termodinámica y ciclo de Brayton

Supongamos el ciclo Brayton ideal que describe el funcionamiento de un motor de calor a presión constante Los modernos motores de turbina de gas y los motores de inyección de aire también siguen el ciclo de Brayton. Este ciclo consta de cuatro procesos termodinámicos:

  1. primera ley - ejemplo - ciclo de brayton
    El ciclo ideal de Brayton consiste en cuatro procesos termodinámicos. Dos procesos isentrópicos y dos procesos isobáricos.

    Compresión isentrópica : el aire ambiente ingresa al compresor, donde se presuriza (1 → 2). El trabajo requerido para el compresor viene dado por C = H 2 – H 1 .

  2. adición de calor isobárico : el aire comprimido pasa a través de una cámara de combustión, donde se quema el combustible y se calienta el aire u otro medio (2 → 3). Es un proceso de presión constante, ya que la cámara está abierta para fluir hacia adentro y hacia afuera. El calor neto agregado viene dado por add = H 3 – H 2
  3. Expansión isentrópica : el aire calentado y presurizado se expande en la turbina y entrega su energía. El trabajo realizado por la turbina viene dado por T = H 4 – H 3
  4. rechazo de calor isobárico : el calor residual debe rechazarse para cerrar el ciclo. El calor neto rechazado viene dado por re = H 4 – H 1

Como se puede ver, podemos describir y calcular (por ejemplo, eficiencia termodinámica) tales ciclos (de manera similar para el ciclo de Rankine ) usando entalpías .

Energía interna

En termodinámica, la energía interna (también llamada energía térmica ) se define como la energía asociada con formas microscópicas de energía . Es una cantidad extensa , depende del tamaño del sistema o de la cantidad de sustancia que contiene. La unidad SI de energía interna es el julio (J) . Es la energía contenida dentro del sistema, excluyendo la energía cinética de movimiento del sistema como un todo y la energía potencial del sistema. Las formas microscópicas de energía incluyen aquellas debidas a la rotación , vibración, traslación e interacciones.entre las moléculas de una sustancia. Ninguna de estas formas de energía se puede medir o evaluar directamente, pero se han desarrollado técnicas para evaluar el cambio en la suma total de todas estas formas microscópicas de energía.

Además, la energía se puede almacenar en los enlaces químicos entre los átomos que forman las moléculas. Este almacenamiento de energía a nivel atómico incluye energía asociada con estados orbitales de electrones, espín nuclear y fuerzas de unión en el núcleo.

Energía microscópica

La energía interna implica energía a escala microscópica . Se puede dividir en energía potencial microscópica, pot , y energía cinética microscópica, kin , componentes:

U = U pot + U kin

Energía microscópica - Energía internadonde la energía cinética microscópica, U kin , involucra los movimientos de todas las partículas del sistema con respecto al marco del centro de masa. Para un gas monoatómico ideal , esto es solo la energía cinética traslacional del movimiento lineal de los átomos. Las partículas monoatómicas no giran ni vibran. El comportamiento del sistema está bien descrito por la teoría cinética de los gases. La teoría cinética se basa en el hecho de que durante una colisión elástica entre una molécula con alta energía cinética y otra con baja energía cinética, parte de la energía se transferirá a la molécula de menor energía cinética. Sin embargo, para los gases poliatómicos hay rotación yenergía cinética vibracional también.

La energía potencial microscópica, pot , involucra los enlaces químicos entre los átomos que forman las moléculas, las fuerzas de unión en el núcleo y también los campos de fuerza física dentro del sistema (por ejemplo, campos eléctricos o magnéticos).

En líquidos y sólidos hay un componente significativo de energía potencial asociado con las fuerzas de atracción intermoleculares .

Calor y trabajo

Hemos visto que la energía interna cambia con Q , que es el calor neto agregado al sistema y W , que es el trabajo neto realizado por el sistema. Ahora examinamos cómo el trabajo realizado y el calor agregado al sistema durante un proceso termodinámico dependen de los detalles de cómo se lleva a cabo el proceso.

Calor en termodinámica

ley cero de termodinámica-calorMientras que la energía interna se refiere a la energía total de todas las moléculas dentro del objeto, el calor es la cantidad de energía que fluye de un cuerpo a otro de forma espontánea debido a su diferencia de temperatura. El calor es una forma de energía, pero es energía en tránsito . El calor no es una propiedad de un sistema. Sin embargo, la transferencia de energía como calor ocurre a nivel molecular como resultado de una diferencia de temperatura .

Considere un bloque de metal a alta temperatura, que consiste en átomos que oscilan intensamente alrededor de sus posiciones promedio. A bajas temperaturas , los átomos continúan oscilando, pero con menos intensidad . Si un bloque de metal más caliente se pone en contacto con un bloque más frío, los átomos que oscilan intensamente en el borde del bloque más caliente emiten su energía cinética a los átomos menos oscilantes en el borde del bloque frío. En este caso, hay una transferencia de energía entre estos dos bloques y el calor fluye del bloque más caliente al más frío por estas vibraciones aleatorias.

En general, cuando dos objetos se ponen en contacto térmico , el calor fluirá entre ellos hasta que se equilibren entre sí. Cuando existe una diferencia de temperatura , el calor fluye espontáneamente del sistema más cálido al sistema más frío . La transferencia de calor ocurre por conducción o por radiación térmica . Cuando se detiene el flujo de calor , se dice que están a la misma temperatura . Luego se dice que están en equilibrio térmico .

Al igual que con el trabajo, la cantidad de calor transferido depende de la ruta y no simplemente de las condiciones iniciales y finales del sistema. En realidad, hay muchas maneras de llevar el gas del estado i al estado f.

Además, como con el trabajo, es importante distinguir entre el calor agregado a un sistema de su entorno y el calor eliminado de un sistema a su entorno. Q es positivo para el calor agregado al sistema, por lo que si el calor sale del sistema, Q es negativo. Debido a que W en la ecuación es el trabajo realizado por el sistema, entonces si el trabajo se realiza en el sistema, W será negativo y E int aumentará.

El símbolo q a veces se usa para indicar el calor agregado o eliminado de un sistema por unidad de masa . Es igual al calor total (Q) agregado o eliminado dividido por la masa (m).

Capacidad calorífica

Tabla de capacidades caloríficas específicasLas diferentes sustancias se ven afectadas a diferentes magnitudes por la adición de calor . Cuando se agrega una cantidad determinada de calor a diferentes sustancias, sus temperaturas aumentan en diferentes cantidades. Esta constante de proporcionalidad entre el calor Q que el objeto absorbe o pierde y el cambio de temperatura resultante T del objeto se conoce como la capacidad calorífica C de un objeto.

C = Q / ΔT

La capacidad calorífica es una propiedad extensa de la materia, lo que significa que es proporcional al tamaño del sistema. La capacidad calorífica C tiene la unidad de energía por grado o energía por kelvin. Cuando se expresa el mismo fenómeno que una propiedad intensiva , la capacidad calorífica se divide por la cantidad de sustancia, masa o volumen, por lo que la cantidad es independiente del tamaño o extensión de la muestra.

Capacidad calorífica específica

La capacidad calorífica de una sustancia por unidad de masa se denomina capacidad calorífica específica (c p ) de la sustancia. El subíndice p indica que la capacidad calorífica y la capacidad calorífica específica se aplican cuando el calor se agrega o elimina a presión constante .

p = Q / mΔT

Capacidad calorífica específica del gas ideal

En el modelo de gas ideal , las propiedades intensivas v y p se definen para sustancias compresibles puras y simples como derivadas parciales de la energía interna u (T, v) y entalpía h (T, p) , respectivamente:

Calor específico a volumen constante y presión constante

donde los subíndices v y p denotan las variables mantenidas fijas durante la diferenciación. Las propiedades v p se denominan calores específicos (o capacidades de calor ) porque, bajo ciertas condiciones especiales, relacionan el cambio de temperatura de un sistema con la cantidad de energía agregada por la transferencia de calor. Sus unidades SI son J / kg K o J / mol K . Se definen dos calores específicos para gases, uno para volumen constante (c v ) y otro para presión constante (c p ) .

Calor específico molar: gas idealSegún la primera ley de la termodinámica , para un proceso de volumen constante con un gas ideal monoatómico, el calor específico molar será:

v = 3 / 2R = 12.5 J / mol K

porque

U = 3 / 2nRT

Se puede deducir que el calor específico molar a presión constante es:

p = C v + R = 5 / 2R = 20.8 J / mol K

Este p es mayor que el calor específico molar a volumen constante v , porque ahora se debe suministrar energía no solo para elevar la temperatura del gas sino también para que el gas funcione porque en este caso el volumen cambia.

Calor latente de vaporización

Calor latente de vaporización: agua a 0.1 MPa, 3 MPa, 16 MPa
El calor de vaporización disminuye al aumentar la presión, mientras que aumenta el punto de ebullición. Se desvanece por completo en un cierto punto llamado punto crítico.

En general, cuando un material cambia de fase de sólido a líquido, o de líquido a gas, una cierta cantidad de energía está involucrada en este cambio de fase. En caso de cambio de fase de líquido a gas, esta cantidad de energía se conoce como entalpía de vaporización , (símbolo ∆H vap ; unidad: J) también conocido como calor (latente) de vaporización o calor de evaporación. El calor latente es la cantidad de calor agregado o eliminado de una sustancia para producir un cambio de fase. Esta energía descompone las fuerzas de atracción intermoleculares, y también debe proporcionar la energía necesaria para expandir el gas (el trabajo pΔV) Cuando se agrega calor latente, no ocurre cambio de temperatura. La entalpía de la vaporización es una función de la presión a la que tiene lugar esa transformación.

Calor latente de vaporización – agua a 0.1 MPa (presión atmosférica)

lg = 2257 kJ / kg

Calor latente de vaporización: agua a 3 MPa (presión dentro de un generador de vapor)

lg = 1795 kJ / kg

Calor latente de vaporización: agua a 16 MPa (presión dentro de un presurizador )

lg = 931 kJ / kg

El calor de vaporización disminuye al aumentar la presión, mientras que aumenta el punto de ebullición . Se desvanece por completo en un cierto punto llamado punto crítico . Por encima del punto crítico, las fases líquida y de vapor son indistinguibles, y la sustancia se llama fluido supercrítico .

El calor de vaporización es el calor requerido para vaporizar completamente una unidad de líquido saturado (o condensar una unidad de masa de vapor saturado) y es igual a lg = h g – h l .

El calor necesario para derretir (o congelar) una unidad de masa en la sustancia a presión constante es el calor de fusión y es igual a sl = h l – h s , donde h s es la entalpía del sólido saturado y h l Es la entalpía del líquido saturado.

Cambios de fase - entalpía de vaporización
Calor latente de vaporización – agua a 0.1 MPa. Parte dominante del calor absorbido.

Trabajar en termodinámica

En termodinámica, el trabajo realizado por un sistema es la energía transferida por el sistema a su entorno. La energía cinética, la energía potencial y la energía interna son formas de energía que son propiedades de un sistema. El trabajo es una forma de energía , pero es energía en tránsito . Un sistema no contiene trabajo, el trabajo es un proceso realizado por o en un sistema. En general, el trabajo se define para sistemas mecánicos como la acción de una fuerza sobre un objeto a través de una distancia.

W = F. re

dónde:

W = trabajo (J)

F = fuerza (N)

d = desplazamiento (m)

pΔV trabajo

pdV Work - Termodinámica
pΔV El trabajo es igual al área bajo la curva de proceso trazada en el diagrama de presión-volumen.

El trabajo de presión-volumen (o trabajo pΔV ) ocurre cuando cambia el volumen V de un sistema. El trabajo pΔV es igual al área bajo la curva de proceso trazada en el diagrama de presión-volumen. También se conoce como el trabajo de límites . El trabajo de límite  ocurre porque la masa de la sustancia contenida dentro del límite del sistema provoca una fuerza, la presión multiplicada por el área de la superficie, para actuar sobre la superficie del límite y hacer que se mueva. El trabajo de límite  (o  pΔV Work ) ocurre cuando el  volumen V de un sistema cambia . Se utiliza para calcular el trabajo de desplazamiento del pistón en un  sistema cerrado.    . Esto es lo que sucede cuando el  vapor o el gas contenido en un dispositivo de pistón-cilindro se expande contra el pistón y lo obliga a moverse.

Ejemplo:

Considere un pistón sin fricción que se utiliza para proporcionar una presión constante de 500 kPa en un cilindro que contiene vapor de agua ( vapor sobrecalentado ) de un volumen de 2 m 3  a 500 K .

Calcule la temperatura final, si se agregan 3000 kJ de calor .

Solución:

Usando tablas de vapor , sabemos que la entalpía específica de dicho vapor (500 kPa; 500 K) es de aproximadamente 2912 kJ / kg . Como en esta condición el vapor tiene una densidad de 2.2 kg / m 3 , entonces sabemos que hay alrededor de 4.4 kg de vapor en el pistón a una entalpía de 2912 kJ / kg x 4.4 kg = 12812 kJ .

Cuando usamos simplemente Q = H 2 – H 1 , la entalpía de vapor resultante será:

2 = H 1 + Q = 15812 kJ

De las mesas de vapor , dicho vapor sobrecalentado (15812 / 4.4 = 3593 kJ / kg) tendrá una temperatura de 828 K (555 ° C) . Dado que en esta entalpía el vapor tiene una densidad de 1.31 kg / m 3 , es obvio que se ha expandido aproximadamente 2.2 / 1.31 = 1.67 (+ 67%). Por lo tanto, el volumen resultante es 2 m 3 x 1.67 = 3.34 m 3 y ∆V = 3.34 m 3 – 2 m 3 = 1.34 m 3 .

La parte p∆V de la entalpía, es decir, el trabajo realizado es:

W = p∆V = 500 000 Pa x 1.34 m 3 = 670 kJ

———–

Durante el cambio de volumen , la presión y la temperatura también pueden cambiar. Para calcular tales procesos, necesitaríamos saber cómo la presión varía con el volumen para el proceso real por el cual el sistema cambia del estado i al estado f . La primera ley de la termodinámica y el trabajo se pueden expresar como:

Trabajo en termodinámica - fórmula general

Trabajar en termodinámica - dependencia de ruta
El trabajo realizado por el sistema depende no solo de los estados inicial y final, sino también de los estados intermedios, es decir, de la ruta.

Cuando un sistema termodinámico cambia de un estado inicial a un estado final , pasa a través de una serie de estados intermedios . Llamamos a esta serie de estados un camino . Siempre hay infinitas posibilidades diferentes para estos estados intermedios. Cuando todos son estados de equilibrio, la ruta se puede trazar en un diagrama pV . Una de las conclusiones más importantes es que:

El trabajo realizado por el sistema depende no solo de los estados inicial y final, sino también de los estados intermedios, es decir, de la ruta.

Q y W dependen de la ruta, mientras que ΔE int es independiente de la ruta. Como se puede ver en la imagen (diagrama pV), el trabajo es una variable dependiente de la ruta. El área azul representa el trabajo pΔV realizado por un sistema a medida que pasa de un estado inicial i a un estado final f. El trabajo W es positivo porque aumenta el volumen del sistema. El segundo proceso muestra que el trabajo es mayor y que depende de la ruta del proceso.

Además, podemos llevar el sistema a través de una serie de estados que forman un circuito cerrado , como i ⇒ f ⇒ i . En este caso, el estado final es el mismo que el estado inicial , pero el trabajo total realizado por el sistema no es cero . Un valor positivo para el trabajo indica que el trabajo lo realiza el sistema en su entorno. Un valor negativo indica que el trabajo se realiza en el sistema por su entorno.

Ejemplo: trabajo específico de turbina

termodinámica de ingeniería
Ciclo de Rankine – Termodinámica como ciencia de conversión de energía

Una etapa de alta presión de la turbina de vapor funciona en estado estable con condiciones de entrada de   6 MPa , t = 275.6 ° C , x = 1 (punto C). Vapor hojas esta etapa de la turbina a una presión de 1,15 MPa , 186 ° C y x = 0,87 (punto D). Calcule la diferencia de entalpía entre estos dos estados. Determinar la transferencia de trabajo específica.

La entalpía para el estado C puede seleccionarse directamente de las tablas de vapor , mientras que la entalpía para el estado D debe calcularse utilizando la calidad del vapor :

1, húmedo = 2785 kJ / kg

2, húmedo = h 2, s x + (1 – x) h 2, l  = 2782. 0.87 + (1 – 0.87). 790 = 2420 + 103 = 2523 kJ / kg

Δh = 262 kJ / kg

Dado que en el proceso adiabático dh = dw , Δh = 262 kJ / kg es el trabajo específico de la turbina .

Cuatro casos especiales de la primera ley de la termodinámica

La primera ley de la termodinámica encuentra aplicación en varios casos especiales:

Proceso adiabático:

Un proceso adiabático es aquel en el que no hay transferencia de calor dentro o fuera del sistema. Se produce muy rápidamente o un sistema está bien aislado de que no se transfiere energía a medida que se produce calor entre el sistema y su entorno. Por lo tanto, dQ = 0 en la primera ley de la termodinámica, que es entonces:

dQ = 0, dE int = – dW

Proceso isocorico:

Un proceso isocrórico es aquel en el que no hay cambio en el volumen . Un proceso isocrórico es un proceso de volumen constante. Cuando el volumen de un sistema termodinámico es constante, no funciona en su entorno. Por lo tanto, dW = 0 en la primera ley de la termodinámica, que es entonces:

dW = 0, dE int = dQ

En un proceso isocrórico , toda la energía agregada como calor (es decir, Q es positiva) permanece en el sistema como un aumento de la energía interna ( aumento de la temperatura ).

Proceso Cíclico:

Un proceso que finalmente devuelve un sistema a su estado inicial se denomina proceso cíclico . Al final de un ciclo, todas las propiedades tienen el mismo valor que tenían al principio.

Para tal proceso, el estado final es el mismo que el estado inicial, por lo que el cambio total de energía interna debe ser cero . El vapor (agua) que circula a través de un circuito cerrado de enfriamiento experimenta un ciclo. La primera ley de la termodinámica es entonces:

dE int = 0, dQ = dW

Por lo tanto, el trabajo neto realizado durante el proceso debe ser exactamente igual a la cantidad neta de energía transferida como calor.

Expansión gratis:

Este es un  proceso adiabático en el que no se produce transferencia de calor entre el sistema y su entorno y no se realiza ningún trabajo en el sistema. Estos tipos de procesos adiabáticos se denominan expansión libre . Es un proceso irreversible en el que un gas se expande en una cámara de evacuación aislada. También se llama expansión Joule . Para un gas ideal, la temperatura no cambia (ver: Segunda Ley de Joule ), sin embargo, los gases reales experimentan un cambio de temperatura durante la expansión libre. En expansión libre, Q = W = 0, y la primera ley requiere que:

dE int = 0

No se puede trazar una expansión libre en un diagrama PV, porque el proceso es rápido, no cuasiestático. Los estados intermedios no son estados de equilibrio y, por lo tanto, la presión no está claramente definida.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la segunda ley de la termodinámica? Definición

La segunda ley de la termodinámica (segunda ley) es el estudio de los sistemas de conversión de energía. Establece un límite superior para la eficiencia de la conversión de calor para trabajar en motores térmicos. Ingenieria termal

Segunda ley de la termodinámica

La entropía de cualquier sistema aislado nunca disminuye. En un proceso termodinámico natural, aumenta la suma de las entropías de los sistemas termodinámicos que interactúan.

Segunda ley de la termodinámica: motores de calorEsta ley indica la irreversibilidad de los procesos naturales . Los procesos reversibles son una ficción teórica útil y conveniente, pero no ocurren en la naturaleza. De esta ley se deduce que es imposible construir un dispositivo que funcione en un ciclo y cuyo único efecto sea la transferencia de calor de un cuerpo más frío a un cuerpo más caliente. De ello se deduce que las máquinas de movimiento perpetuo del segundo tipo son imposibles.

La segunda ley de la termodinámica es un principio general, que va más allá de las limitaciones impuestas por la primera ley de la termodinámica . La primera ley se usa para relacionar y evaluar las diversas energías involucradas en un proceso. Sin embargo, no se puede obtener información sobre la dirección del proceso mediante la aplicación de la primera ley. La segunda ley de la termodinámica impone restricciones sobre la dirección de la transferencia de calor y establece un límite superior para la eficiencia de la conversión de calor para trabajar en motores de calor . Entonces, la segunda ley es directamente relevante para muchos problemas prácticos importantes.

Una de las áreas de aplicación de la segunda ley de la termodinámica es el estudio de los sistemas de conversión de energía. Por ejemplo, no es posible convertir toda la energía obtenida de un carbón en una central eléctrica a carbón o de un reactor nuclear en una central nuclear en energía eléctrica. Debe haber pérdidas en el proceso de conversión.

Dirección de Procesos Termodinámicos

Muchos procesos termodinámicos proceden naturalmente en una dirección pero no al contrario. Por ejemplo, cuando existe una diferencia de temperatura , el calor fluye espontáneamente del sistema más cálido al sistema más frío , nunca al revés. De hecho, dicho flujo de calor (de un cuerpo más frío a un sistema más cálido) no violaría la primera ley de la termodinámica , es decir, se conservaría la energía. Pero no sucede en la naturaleza.

Por ejemplo, quemar gasolina para impulsar automóviles es un proceso de conversión de energía en el que confiamos. La energía química en la gasolina se convierte en energía térmica , que luego se convierte en energía mecánica que hace que el automóvil se mueva. La energía mecánica se ha convertido en energía cinética . Cuando usamos los frenos para detener un automóvil, esa energía cinética se convierte por fricción en calor o energía térmica . En esta dirección inversa, hay muchos dispositivos que convierten el calor parcialmente en energía mecánica. Pero no se puede construir una máquina que convierta el calor por completo en energía mecánica. Siempre habrá pérdidas significativas de energía.

Las direcciones de los procesos termodinámicos están sujetas a la segunda ley de la termodinámica, especialmente a la Declaración de Clausius de la Segunda Ley .

Diversas declaraciones de la ley

La segunda ley de la termodinámica se puede expresar de muchas maneras específicas. Cada declaración expresa la misma ley. A continuación se enumeran tres que a menudo se encuentran.

  • Declaración de Clausius
  • Declaración de Kelvin-Planck
  • La entropía y la segunda ley

Antes de estas declaraciones, tenemos que recordar el trabajo de  un ingeniero y físico francés, Nicolas Léonard Sadi Carnot avanzó el estudio de la segunda ley al formar un principio ( también llamado regla de Carnot ) que especifica los límites de la máxima eficiencia que cualquier motor térmico puede obtener .

 

Declaración de Clausius de la segunda ley

Declaración de Clausius de la segunda leyUna de las primeras declaraciones de la Segunda Ley de la Termodinámica fue hecha por R. Clausius en 1850 . Él dijo lo siguiente.

“Es imposible construir un dispositivo que funcione en un ciclo y cuyo único efecto sea la transferencia de calor de un cuerpo más frío a un cuerpo más caliente”.

El calor no puede fluir espontáneamente del sistema frío al sistema caliente sin realizar un trabajo externo en el sistema. Esto es exactamente lo que logran los refrigeradores y las bombas de calor. En un refrigerador, el calor fluye de frío a caliente, pero solo cuando es forzado por un trabajo externo, los refrigeradores son impulsados ​​por motores eléctricos que requieren trabajo de su entorno para funcionar.

Las declaraciones de Clausius y Kelvin-Planck han demostrado ser equivalentes.

Declaración de Kelvin-Planck de la Segunda Ley

Declaración de Kelvin-Planck de la Segunda Ley“Es imposible construir un dispositivo que funcione en un ciclo y no produzca otro efecto que la producción de trabajo y la transferencia de calor de un solo cuerpo”.

Esta declaración opera con el término ” depósito térmico ” o ” depósito único “. Un depósito es un objeto grande, en el que la temperatura permanece constante mientras se extrae la energía. Tal sistema puede ser aproximado de varias maneras: por la atmósfera de la tierra, grandes cuerpos de agua como lagos, océanos, etc.

La declaración de Kelvin-Planck no excluye la existencia de un sistema, que desarrolla una cantidad neta de trabajo de una transferencia de calor extraída de un depósito térmico. Según esta declaración, un sistema que experimenta un ciclo no puede desarrollar una cantidad neta positiva de trabajo de una transferencia de calor extraída de un depósito térmico.

La entropía y la segunda ley

Diagrama ts de un ciclo termodinámico
Diagrama Ts del ciclo de Rankine

Una consecuencia de la segunda ley de la termodinámica es el desarrollo de la propiedad física de la materia, que se conoce como entropía (S) . El cambio en esta propiedad se utiliza para determinar la dirección en la que procederá un proceso determinado. La entropía cuantifica la energía de una sustancia que ya no está disponible para realizar un trabajo útil . Esto se relaciona con la segunda ley, ya que la segunda ley predice que no todo el calor proporcionado a un ciclo puede transformarse en una cantidad igual de trabajo, debe producirse un cierto rechazo de calor.

Ver también: entropía

Según Clausius, la entropía se definió mediante el cambio en la entropía S de un sistema. El cambio en la entropía S, cuando se le agrega una cantidad de calor Q mediante un proceso reversible a temperatura constante, viene dado por:

Entropía- Ecuación

Aquí Q es la energía transferida como calor hacia o desde el sistema durante el proceso, y T es la temperatura del sistema en grados Kelvin durante el proceso. La unidad SI de la entropía es J / K .

La segunda ley de la termodinámica también se puede expresar como ∆S≥0 para un ciclo cerrado.

En palabras:

La entropía de cualquier sistema aislado nunca disminuye. En un proceso termodinámico natural, aumenta la suma de las entropías de los sistemas termodinámicos que interactúan.

≥S≥0

Debido a que la entropía dice mucho acerca de la utilidad de una cantidad de calor transferida en la realización del trabajo, las tablas de vapor incluyen valores de entropía específica (s = S / m) como parte de la información tabulada.

Motores de calor

Las fuentes de energía siempre han jugado un papel muy importante en el desarrollo de la sociedad humana. La energía generalmente se define como el potencial para hacer trabajo o producir calor . A veces es como la “moneda” para realizar el trabajo. Una de las propiedades más maravillosas del universo es que la energía puede transformarse de un tipo a otro y transferirse de un objeto a otro .

En general, es fácil producir energía térmica haciendo trabajo , por ejemplo, mediante cualquier proceso de fricción. Pero obtener trabajo de la energía térmica es más difícil . Está estrechamente asociado con el concepto de entropía . Por ejemplo, la electricidad es particularmente útil ya que tiene una entropía muy baja (está altamente ordenada) y puede convertirse en otras formas de energía de manera muy eficiente .

A veces, la energía mecánica está directamente disponible, por ejemplo, la energía eólica y la energía hidroeléctrica. Pero la mayor parte de nuestra energía proviene de la quema de combustibles fósiles (carbón, petróleo y gas) y de reacciones nucleares . En la actualidad, el combustible fósil sigue siendo la fuente de energía predominante del mundo. Pero la quema de combustibles fósiles genera solo energía térmica , por lo tanto, estas fuentes de energía se denominan ” fuentes de energía primaria “, que deben convertirse en fuente de energía secundaria , los llamados portadores de energía ( energía eléctrica, etc.). Para convertir la energía térmica en otra forma de energía, un motor térmico debe ser usado.

En general, un motor térmico es un dispositivo que convierte la energía química en calor o energía térmica y luego en energía mecánica o eléctrica.

Ejemplo de motor térmico
El ciclo de Rankine describe de cerca los procesos en motores de calor operados por vapor que se encuentran comúnmente en la mayoría de las centrales térmicas.

Muchos motores térmicos  funcionan de manera cíclica, agregando energía en forma de calor en una parte del ciclo y utilizando esa energía para realizar un trabajo útil en otra parte del ciclo.
Por ejemplo, como es típico en todas las centrales térmicas convencionales ,  el calor se utiliza para generar vapor que impulsa una turbina de vapor conectada a un generador que produce electricidad. Los generadores de vapor, las turbinas de vapor, los condensadores y las bombas de agua de alimentación constituyen un motor térmico , sujeto a las limitaciones de eficiencia impuestas por la segunda ley de la termodinámica . En las centrales nucleares modernas, la eficiencia termodinámica general es aproximadamenteun tercio (33%), por lo que se necesitan 3000 MWth de energía térmica de la reacción de fisión para generar 1000 MWe de energía eléctrica.

Tipos de motores de calor

En general, los motores térmicos se clasifican según una ubicación de combustión como:

  • Motor de combustión externa. Por ejemplo, las máquinas de vapor son motores de combustión externa, donde el fluido de trabajo está separado de los productos de combustión.
  • Motor de combustión interna. Un ejemplo típico de motor de combustión interna es un motor usado en un automóvil, en el cual la alta temperatura se logra al quemar la mezcla de gasolina y aire en el cilindro mismo.

La categorización detallada se basa en un fluido de trabajo utilizado en el ciclo termodinámico:

  • Ciclos de gas. En estos ciclos, el fluido de trabajo es siempre un gas. El ciclo Otto y el ciclo Diesel (usado en automóviles) también son ejemplos típicos de ciclos de solo gas. Los modernos motores de turbina de gas y los motores de inyección de aire también basados ​​en el ciclo de solo gas, siguen el ciclo de Brayton.
  • Ciclos de líquidos. Los ciclos de solo líquido son bastante exóticos. En estos ciclos, el fluido de trabajo es siempre un líquido. El motor líquido Malone es un ejemplo de ciclo de solo líquido. El motor líquido Malone fue una modificación del ciclo de Stirling, utilizando agua como fluido de trabajo en lugar de gas.
  • Ciclos con cambios de fase. Los motores de vapor son ejemplos típicos de motores externos con cambio de fase del fluido de trabajo.

Ejemplo de motor térmico

termodinámica de ingeniería
Ciclo de Rankine – Termodinámica como ciencia de conversión de energía

Los motores de vapor y los refrigeradores son ejemplos típicos de motores externos con cambio de fase de fluido de trabajo. El ciclo termodinámico típico utilizado para analizar este proceso se llama ciclo de Rankine , que generalmente usa agua como fluido de trabajo.

El ciclo de Rankine describe de cerca los procesos en motores de calor operados por vapor que se encuentran comúnmente en la mayoría de las centrales térmicas . Las fuentes de calor utilizadas en estas centrales eléctricas suelen ser la combustión de combustibles fósiles como el carbón, el gas natural o también la fisión nuclear .

Una planta de energía nuclear (estación de energía nuclear) se parece a una estación de energía térmica estándar con una excepción. La fuente de calor en la central nuclear es un reactor nuclear . Como es típico en todas las centrales térmicas convencionales, el calor se utiliza para generar vapor que impulsa una turbina de vapor conectada a un generador que produce electricidad.

Típicamente, la mayoría de las plantas de energía nuclear opera turbinas de vapor de condensación de etapas múltiples . En estas turbinas, la etapa de alta presión recibe vapor (este vapor es vapor casi saturado – x = 0.995 – punto C en la figura; 6 MPa ; 275.6 ° C) desde un generador de vapor y lo expulsa al separador-recalentador de humedad (punto D ) El vapor debe recalentarse para evitar daños que puedan ocasionar a las aspas de la turbina de vapor el vapor de baja calidad . El recalentador calienta el vapor (punto D) y luego el vapor se dirige a la etapa de baja presión de la turbina de vapor, donde se expande (punto E a F). El vapor agotado se condensa en el condensador y está a una presión muy por debajo de la atmosférica (presión absoluta de0.008 MPa ), y está en un estado parcialmente condensado (punto F), típicamente de una calidad cercana al 90%.

En este caso, los generadores de vapor, la turbina de vapor, los condensadores y las bombas de agua de alimentación constituyen un motor térmico, sujeto a las limitaciones de eficiencia impuestas por la segunda ley de la termodinámica . En el caso ideal (sin fricción, procesos reversibles, diseño perfecto), este motor térmico tendría una eficiencia de Carnot de

= 1 – T frío / T caliente = 1 – 315/549 = 42.6%

donde la temperatura del depósito caliente es 275.6 ° C (548.7K), la temperatura del depósito frío es 41.5 ° C (314.7K). Pero la central nuclear es el motor térmico real , en el que los procesos termodinámicos son de alguna manera irreversibles. No se hacen infinitamente lento. En dispositivos reales (como turbinas, bombas y compresores) una fricción mecánica y pérdidas de calor causan pérdidas adicionales de eficiencia.

Por lo tanto, las centrales nucleares suelen tener una eficiencia de aproximadamente el 33%. En las centrales nucleares modernas, la eficiencia termodinámica general es de aproximadamente un tercio (33%), por lo que se necesitan 3000 MWth de energía térmica de la reacción de fisión para generar 1000 MWe de energía eléctrica.

De acuerdo con el principio de Carnot, se pueden lograr mayores eficiencias aumentando la temperatura del vapor. Pero esto requiere un aumento de las presiones dentro de las calderas o generadores de vapor. Sin embargo, las consideraciones metalúrgicas ponen límites superiores a tales presiones. Desde este punto de vista, los reactores de agua supercríticos se consideran un avance prometedor para las centrales nucleares debido a su alta eficiencia térmica (~ 45% frente a ~ 33% para los LWR actuales). Los SCWR funcionan a presión supercrítica (es decir, superior a 22,1 MPa).

Eficiencia térmica y la segunda ley

Un motor térmico ideal es un motor imaginario en el que la energía extraída como calor del depósito de alta temperatura se convierte por completo en trabajo. Pero de acuerdo con la declaración de Kelvin-Planck , tal motor violaría la segunda ley de la termodinámica, porque debe haber pérdidas en el proceso de conversión. El calor neto agregado al sistema debe ser mayor que el trabajo neto realizado por el sistema.

Declaración de Kelvin-Planck:

“Es imposible construir un dispositivo que funcione en un ciclo y no produzca otro efecto que la producción de trabajo y la transferencia de calor de un solo cuerpo”.

Fórmula de eficiencia térmica

Como resultado de esta declaración, se define el rendimiento térmico , η º , de cualquier motor térmico como la relación entre el trabajo que hace, W , para el calor de entrada a la alta temperatura, Q H .

fórmula de eficiencia térmica - 1

La eficiencia térmica , η th , representa la fracción de calor , H , que se convierte en trabajo . Es una medida de rendimiento sin dimensiones de un motor térmico que utiliza energía térmica, como una turbina de vapor, un motor de combustión interna o un refrigerador. Para una bomba de refrigeración o de calor, la eficiencia térmica indica el grado en que la energía agregada por el trabajo se convierte en salida neta de calor. Como es un número adimensional, siempre debemos expresar W, Q H y Q C en las mismas unidades.

Dado que la energía se conserva de acuerdo con la primera ley de la termodinámica y la energía no se puede convertir en trabajo por completo, la entrada de calor, Q H , debe ser igual al trabajo realizado, W, más el calor que se debe disipar como calor residual Q C en el ambiente. Por lo tanto, podemos reescribir la fórmula para la eficiencia térmica como:

fórmula de eficiencia térmica - 2

Para dar la eficiencia como un porcentaje, multiplicamos la fórmula anterior por 100. Tenga en cuenta que, η th podría ser 100% solo si el calor residual Q C será cero.

En general, la eficiencia de incluso los mejores motores térmicos es bastante baja. En resumen, es muy difícil de convertir la energía térmica a la energía mecánica . Las eficiencias térmicas suelen ser inferiores al 50% y, a menudo, muy inferiores. Tenga cuidado cuando lo compara con la eficiencia de la energía eólica o hidroeléctrica (las turbinas eólicas no son motores de calor), no hay conversión de energía entre la energía térmica y mecánica.

Causas de ineficiencia

Como se discutió, una eficiencia puede variar entre 0 y 1. Cada motor térmico es de alguna manera ineficiente. Esta ineficiencia puede atribuirse a tres causas.

  • Irreversibilidad de los procesos . Existe un límite superior teórico general para la eficiencia de la conversión de calor para trabajar en cualquier motor térmico. Este límite superior se llama eficiencia de Carnot . Según el principio de Carnot , ningún motor puede ser más eficiente que un motor reversible ( un motor térmico de Carnot ) que opera entre los mismos depósitos de alta temperatura y baja temperatura. Por ejemplo, cuando el depósito caliente tiene T caliente de 400 ° C (673K) y T frío de aproximadamente 20 ° C (293K), la eficiencia máxima (ideal) será: = 1 – T frío / T caliente = 1 – 293 / 673 = 56%. Pero todos los procesos termodinámicos reales son de alguna manera irreversibles.. No se hacen infinitamente lento. Por lo tanto, los motores térmicos deben tener eficiencias más bajas que los límites en su eficiencia debido a la irreversibilidad inherente del ciclo del motor térmico que usan.
  • Presencia de fricción y pérdidas de calor. En sistemas termodinámicos reales o en motores de calor real, una parte de la ineficiencia general del ciclo se debe a las pérdidas de los componentes individuales. En dispositivos reales (como turbinas, bombas y compresores), una fricción mecánica , pérdidas de calor y pérdidas en el proceso de combustión causan pérdidas adicionales de eficiencia.
  • Ineficiencia de diseño . Finalmente, la última y también importante fuente de ineficiencias son los compromisos asumidos por los ingenieros al diseñar un motor térmico (por ejemplo, una central eléctrica). Deben considerar el costo y otros factores en el diseño y operación del ciclo. Como ejemplo, considere un diseño del condensador en las centrales térmicas. Idealmente, el vapor extraído al condensador no tendría subenfriamiento . Pero los condensadores reales están diseñados para subenfriar el líquido unos pocos grados centígrados para evitar la cavitación por succión en las bombas de condensado. Pero, este subenfriamiento aumenta la ineficiencia del ciclo, porque se necesita más energía para recalentar el agua.

Eficiencia Térmica de Motores de Calor

En general, la eficiencia de incluso los mejores motores térmicos es bastante baja. En resumen, es muy difícil convertir la energía térmica en energía mecánica . Las eficiencias térmicas suelen ser inferiores al 50% y, a menudo, muy inferiores.

Takaishi, Tatsuo;  Numata, Akira;  Nakano, Ryouji;  Sakaguchi, Katsuhiko (marzo de 2008).
Takaishi, Tatsuo; Numata, Akira; Nakano, Ryouji; Sakaguchi, Katsuhiko (marzo de 2008). “Enfoque para motores diesel y de gas de alta eficiencia” (PDF). Revisión técnica de Mitsubishi Heavy Industries. 45 (1). Consultado el 4 de febrero de 2011.

Es fácil producir energía térmica haciendo trabajo, por ejemplo, mediante cualquier proceso de fricción. Pero obtener trabajo de la energía térmica es más difícil. Está estrechamente asociado con el concepto de entropía , que cuantifica la energía de una sustancia que ya no está disponible para realizar un trabajo útil. Por ejemplo, la electricidad es particularmente útil ya que tiene una entropía muy baja (está altamente ordenada) y puede convertirse en otras formas de energía de manera muy eficiente . Tenga cuidado cuando lo compara con la eficiencia de la energía eólica o hidroeléctrica (las turbinas eólicas no son motores de calor), no hay conversión de energía entre la energía térmica y mecánica.

La eficiencia térmica de varios motores térmicos diseñados o utilizados hoy en día tiene una amplia gama:

Por ejemplo:

Transporte

  • A mediados del siglo XX, una locomotora de vapor típica tenía una eficiencia térmica de aproximadamente el 6% . Eso significa que por cada 100 MJ de carbón quemado, se produjeron 6 MJ de potencia mecánica.
  • Un motor automotriz de gasolina típico opera alrededor del 25% al ​​30% de la eficiencia térmica. Aproximadamente 70-75% se rechaza como calor residual sin convertirse en trabajo útil, es decir, trabajo entregado a las ruedas.
  • Un motor automotriz diesel típico opera alrededor del 30% al 35% . En general, los motores que utilizan el ciclo Diesel suelen ser más eficientes.
  • En 2014, se introdujeron nuevas regulaciones para los autos de Fórmula 1 . Estas regulaciones de automovilismo han empujado a los equipos a desarrollar unidades de potencia altamente eficientes. Según Mercedes, su unidad de potencia ahora está logrando más del 45% y cerca del 50% de eficiencia térmica, es decir, el 45 – 50% de la energía potencial en el combustible se entrega a las ruedas.
  • El motor diesel tiene la mayor eficiencia térmica de cualquier motor de combustión práctico. Los motores diesel de baja velocidad (como se usan en los barcos) pueden tener una eficiencia térmica que excede el 50% . El motor diésel más grande del mundo alcanza el 51,7%.

Ingeniería de la Energía

  • Conversión de energía térmica oceánica (OTEC). OTEC es un motor térmico muy sofisticado que utiliza la diferencia de temperatura entre las aguas marinas superficiales más frías y más cálidas para hacer funcionar una turbina de baja presión. Dado que la diferencia de temperatura es baja , aproximadamente 20 ° C, su eficiencia térmica también es muy baja, aproximadamente 3% .
  • En las centrales nucleares modernas, la eficiencia térmica general es de aproximadamente un tercio (33%), por lo que se necesitan 3000 MWth de energía térmica de la reacción de fisión para generar 1000 MWe de energía eléctrica. Se pueden lograr mayores eficiencias aumentando la temperatura del vapor . Pero esto requiere un aumento de las presiones dentro de las calderas o generadores de vapor.. Sin embargo, las consideraciones metalúrgicas ponen límites superiores a tales presiones. En comparación con otras fuentes de energía, la eficiencia térmica del 33% no es mucho. Pero debe tenerse en cuenta que las centrales nucleares son mucho más complejas que las centrales de combustibles fósiles y es mucho más fácil quemar combustibles fósiles que generar energía a partir de combustibles nucleares .
  • Las plantas de energía de combustible fósil subcrítico, que funcionan bajo presión crítica (es decir, por debajo de 22.1 MPa), pueden lograr una eficiencia de 36 a 40%.
  • Los reactores de agua supercríticos se consideran un avance prometedor para las centrales nucleares debido a su alta eficiencia térmica (~ 45% frente a ~ 33% para los actuales LWR).
  • Las plantas de energía de combustible fósil supercrítico, que funcionan a presión supercrítica (es decir, superior a 22,1 MPa), tienen una eficiencia de alrededor del 43% . Las centrales eléctricas de carbón más eficientes y también muy complejas que funcionan a presiones “ultra críticas” (es decir, alrededor de 30 MPa) y usan recalentamiento de etapas múltiples alcanzan aproximadamente el 48% de eficiencia.
  • Las plantas modernas de turbina de gas de ciclo combinado (CCGT), en las que el ciclo termodinámico consta de dos ciclos de planta de energía (por ejemplo, el ciclo Brayton y el ciclo Rankine), pueden lograr una eficiencia térmica de alrededor del 55% , en contraste con un ciclo de vapor único planta de energía que se limita a eficiencias de alrededor del 35-45%.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es el proceso termodinámico? Definición

Un proceso termodinámico se define como un cambio de un macroestado de equilibrio a otro macroestado. El conocimiento de los procesos termodinámicos es de suma importancia para los ingenieros. Ingenieria termal

Procesos termodinámicos.

Procesos termodinámicosUn proceso termodinámico se define como un cambio de un macroestado de equilibrio a otro macroestado. Los estados inicial y final son los elementos definitorios del proceso. Durante dicho proceso, un sistema comienza desde un estado inicial i , descrito por una presión p i , un volumen V i y una temperatura Ti , pasa a través de varios estados cuasiestáticos a un estado final f , descrito por una presión p f , a volumen V f , y una temperatura T f . En este procesola energía se puede transferir de forma o al sistema y también se puede trabajar por el sistema o en él. Un ejemplo de un proceso termodinámico es aumentar la presión de un gas mientras se mantiene una temperatura constante. En la siguiente sección, hay ejemplos de procesos termodinámicos que son de suma importancia en la ingeniería de motores térmicos .

Tipos de procesos termodinámicos

Proceso reversible

En termodinámica, un proceso reversible se define como un proceso que se puede revertir induciendo cambios infinitesimales en alguna propiedad del sistema, y ​​al hacerlo no deja cambios ni en el sistema ni en el entorno. Durante el proceso reversible, la entropía del sistema no aumenta y el sistema está en equilibrio termodinámico con su entorno.

Proceso irreversible

En termodinámica, un proceso irreversible se define como un proceso que no se puede revertir, proceso, que no puede devolver tanto el sistema como el entorno a sus condiciones originales.

Durante el proceso irreversible aumenta la entropía del sistema .

Proceso cíclico

Un proceso que finalmente devuelve un sistema a su estado inicial se denomina proceso cíclico . Al final de un ciclo, todas las propiedades tienen el mismo valor que tenían al principio. Para tal proceso, el estado final es el mismo que el estado inicial , por lo que el cambio total de energía interna debe ser cero.

Debe tenerse en cuenta que, de acuerdo con la segunda ley de la termodinámica , no todo el calor proporcionado a un ciclo puede transformarse en una cantidad igual de trabajo, debe producirse un cierto rechazo de calor . La eficiencia térmica , η º , de cualquier motor térmico como la relación entre el trabajo que hace, W , para el calor de entrada a la alta temperatura, Q H .  η º  = W / Q H .

Ver también: Proceso reversible

Ver también: proceso irreversible

Ver también: proceso cíclico

Expansión isentrópica versus adiabática
El proceso isentrópico es un caso especial de procesos adiabáticos. Es un proceso adiabático reversible. Un proceso isentrópico también se puede llamar un proceso de entropía constante.
Proceso cíclico - trabajo
Un proceso que finalmente devuelve un sistema a su estado inicial se denomina proceso cíclico.

Proceso isentrópico

Un proceso isentrópico es un proceso termodinámico , en el cual la entropíadel fluido o gas permanece constante. Significa que el proceso isentrópico es un caso especial de un proceso adiabático en el que no hay transferencia de calor o materia. Es un proceso adiabático reversible . Un proceso isentrópico también se puede llamar un proceso de entropía constante. En ingeniería, un proceso tan idealizado es muy útil para la comparación con procesos reales.

Ver también: proceso isentrópico

Principales características del proceso isentrópico.
Proceso isentrópico - características
Diagrama PV - proceso isentrópico
Diagrama PV de una expansión isentrópica de helio (3 → 4) en una turbina de gas.

Proceso adiabático

Un proceso adiabático es un proceso termodinámico , en el que no hay transferencia de calor dentro o fuera del sistema (Q = 0). El sistema puede considerarse perfectamente aislado . En un proceso adiabático, la energía se transfiere solo como trabajo. La suposición de que no hay transferencia de calor es muy importante, ya que podemos usar la aproximación adiabática solo en procesos muy rápidos . En estos procesos rápidos, no hay tiempo suficiente para que la transferencia de energía como calor tenga lugar hacia o desde el sistema.

En dispositivos reales (como turbinas, bombas y compresores) se producen pérdidas de calor y pérdidas en el proceso de combustión, pero estas pérdidas suelen ser bajas en comparación con el flujo de energía general y podemos aproximar algunos procesos termodinámicos por el proceso adiabático.

Ver también: proceso adiabático

Características principales del proceso adiabático.
Características principales del proceso adiabático.
Expansión isentrópica versus adiabática
Expansión isentrópica vs. adiabática.

Proceso isotérmico

Un proceso isotérmico es un proceso termodinámico , en el que la temperatura del sistema permanece constante (T = constante). La transferencia de calor dentro o fuera del sistema generalmente debe ocurrir a una velocidad tan lenta para ajustarse continuamente a la temperatura del depósito a través del intercambio de calor. En cada uno de estos estados se mantiene el equilibrio térmico .

Para un proceso ideal de gasy politrópico, el caso n = 1 corresponde a un proceso isotérmico (temperatura constante). A diferencia del proceso adiabático , en el que n = κ   y un sistema no intercambia calor con su entorno (Q = 0; ∆T ≠ 0 , en un proceso isotérmico no hay cambio en la energía interna (debido a ∆T = 0 ) y, por lo tanto, ΔU = 0 (para gases ideales) y Q ≠ 0. Un proceso adiabático no es necesariamente un proceso isotérmico, ni un proceso isotérmico es necesariamente adiabático.

Ver también:  proceso isotérmico

Principales características del proceso isotérmico.
Proceso isotérmico - características principales
Ley de Boyle-Mariotte
Ley Boyle-Mariotte. Para una masa fija de gas a temperatura constante, el volumen es inversamente proporcional a la presión. Fuente: grc.nasa.gov La política de derechos de autor de la NASA establece que “el material de la NASA no está protegido por derechos de autor a menos que se indique lo contrario”.

Proceso isobárico

Un proceso isobárico es un proceso termodinámico , en el cual la presión del sistema permanece constante (p = const). La transferencia de calor dentro o fuera del sistema funciona, pero también cambia la energía interna del sistema.

Dado que hay cambios en la energía interna (dU) y cambios en el volumen del sistema (∆V), los ingenieros a menudo usan la entalpía del sistema, que se define como:

H = U + pV

En muchos análisis termodinámicos es conveniente utilizar la entalpía en lugar de la energía interna. Especialmente en el caso de la primera ley de la termodinámica .

En ingeniería, ambos ciclos termodinámicos muy importantes (ciclo de Brayton y Rankine ) se basan en dos procesos isobáricos , por lo tanto, el estudio de este proceso es crucial para las centrales eléctricas.

Ver también: proceso isobárico

Principales características del proceso isobárico.
Proceso isotérmico - características principales
La Ley de Charles es una de las leyes del gas.
Para una masa fija de gas a presión constante, el volumen es directamente proporcional a la temperatura Kelvin. Fuente: grc.nasa.gov La política de derechos de autor de la NASA establece que “el material de la NASA no está protegido por derechos de autor a menos que se indique lo contrario”.

Proceso isocorico

Un proceso isocróricoes un proceso termodinámico, en el que el volumen del sistema cerrado permanece constante (V = constante). Describe el comportamiento del gas dentro del contenedor, que no puede deformarse. Dado que el volumen permanece constante, la transferencia de calor dentro o fuera del sistema no funciona con el p∆V , sino que solo cambia la energía interna (la temperatura) del sistema.

En la ingeniería de motores de combustión interna , los procesos isocróricos son muy importantes para sus ciclos termodinámicos (ciclo Otto y Diesel), por lo tanto, el estudio de este proceso es crucial para la ingeniería automotriz.

Ver también:  proceso isocrórico

Principales características del proceso isocrórico.
Proceso isocrórico - características principales
Ley de Guy-Lussac
Para una masa fija de gas a volumen constante, la presión es directamente proporcional a la temperatura Kelvin.

Proceso politropico

Un proceso politrópico es cualquier proceso termodinámico que se puede expresar mediante la siguiente ecuación:

pV n = constante

El proceso politrópico puede describir la expansión y compresión del gas, que incluyen la transferencia de calor . El exponente n se conoce como índice politrópico y puede tomar cualquier valor de 0 a ∞, dependiendo del proceso en particular.

Ver también:  proceso politrópico

Principales características del proceso politropico
Proceso politrópico - características principales
proceso politropico - diagrama pv
Procesos politropicos con varios indices politropicos.

Proceso de estrangulamiento – Proceso Isenthalpic

Un proceso de estrangulamiento es un proceso termodinámico , en el cual la entalpía del gas o medio permanece constante (h = constante) . De hecho, el proceso de aceleración es uno de los procesos isentálpicos . Durante el proceso de aceleración, no se realiza ningún trabajo en el sistema (dW = 0) y, por lo general, no hay transferencia de calor ( adiabático ) desde o hacia el sistema (dQ = 0). Por otro lado, el proceso de estrangulamiento no puede ser isentrópico, es un proceso fundamentalmente irreversible . Características del proceso de estrangulamiento:

  1. Sin transferencia de trabajo
  2. Sin transferencia de calor
  3. Proceso irreversible
  4. Proceso Isenthalpic

El estrangulamiento del vapor húmedo también se asocia con la conservación de la entalpía . Pero en este caso, una reducción en la presión provoca un aumento en la calidad del vapor .

Ver también: Proceso de regulación

proceso de estrangulamiento - diagrama hs - steam
………………………………………………………………………………………………………………………………..

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es la fórmula de eficiencia térmica? Definición

La fórmula de eficiencia térmica representa la fracción de calor, QH, que se convierte en trabajo. La ecuación de eficiencia térmica a menudo se expresa en términos de temperaturas o entalpías. Ingenieria termal

Fórmula de eficiencia térmica

Como resultado de esta declaración, se define el rendimiento térmico , η º , de cualquier motor térmico como la relación entre el trabajo que hace, W , para el calor de entrada a la alta temperatura, Q H . La fórmula de eficiencia térmica es entonces:

fórmula de eficiencia térmica - 1

La eficiencia térmica , η th , representa la fracción de calor , H , que se convierte en trabajo . Es una medida de rendimiento sin dimensiones de un motor térmico que utiliza energía térmica, como una turbina de vapor, un motor de combustión interna o un refrigerador. Para una bomba de refrigeración o de calor, la eficiencia térmica indica el grado en que la energía agregada por el trabajo se convierte en salida neta de calor. Como es un número adimensional, siempre debemos expresar W, Q H y Q C en las mismas unidades.

Dado que la energía se conserva de acuerdo con la primera ley de la termodinámicay la energía no se puede convertir en trabajo por completo, la entrada de calor, Q H , debe ser igual al trabajo realizado, W, más el calor que se debe disipar como calor residual Q C en el ambiente. Por lo tanto, podemos reescribir la fórmula para la eficiencia térmica como:

fórmula de eficiencia térmica - 2

Para dar la eficiencia como un porcentaje, multiplicamos la fórmula anterior por 100. Tenga en cuenta que, η th podría ser 100% solo si el calor residual Q C será cero.

En general, la eficiencia de incluso los mejores motores térmicos es bastante baja. En resumen, es muy difícil de convertir la energía térmica a la energía mecánica . Las eficiencias térmicas suelen ser inferiores al 50% y, a menudo, muy inferiores. Tenga cuidado cuando lo compara con la eficiencia de la energía eólica o hidráulica (las turbinas eólicas no son motores de calor), no hay conversión de energía entre la energía térmica y mecánica.

 

Fórmula para el ciclo de Brayton

primera ley - ejemplo - ciclo de brayton
El ciclo ideal de Brayton consiste en cuatro procesos termodinámicos. Dos procesos isentrópicos y dos procesos isobáricos.

La eficiencia térmica del ciclo simple de Brayton, para gas ideal y en términos de entalpías específicas se puede expresar en términos de temperaturas:

eficiencia térmica del ciclo de Brayton

Eficiencia térmica del ciclo de Rankine

Ejemplo de motor térmico
El ciclo de Rankine describe de cerca los procesos en motores de calor operados por vapor que se encuentran comúnmente en la mayoría de las centrales térmicas.

La eficiencia térmica del ciclo simple de Rankine y en términos de entalpías específicas es:

eficiencia térmica del ciclo de Rankine

Es una ecuación muy simple y para determinar la eficiencia térmica puede usar datos de tablas de vapor .

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es el ciclo de Carnot – Carnot Heat Engine – Definición

Un sistema que experimenta un ciclo de Carnot se llama motor de calor de Carnot. El ciclo de Carnot es un ciclo teórico con la mayor eficiencia posible de todos los ciclos termodinámicos. Ingenieria termal

Carnot Cycle – Carnot Heat Engine

diagrama pV del ciclo de Carnot
Diagrama pV del ciclo de Carnot. El área delimitada por la ruta completa del ciclo representa el trabajo total que se puede hacer durante un ciclo.

La segunda ley de la termodinámica impone restricciones sobre la dirección de la transferencia de calor y establece un límite superior para la eficiencia de la conversión de calor para trabajar en motores de calor . Entonces, la segunda ley es directamente relevante para muchos problemas prácticos importantes.

En 1824, un ingeniero y físico francés, Nicolas Léonard Sadi Carnot avanzó el estudio de la segunda ley al formar un principio (también llamado la regla de Carnot ) que especifica los límites de la máxima eficiencia que cualquier motor térmico puede obtener. En resumen, este principio establece que la eficiencia de un ciclo termodinámico depende únicamente de la diferencia entre los depósitos de temperatura caliente y fría.

El principio de Carnot establece:

  1. Ningún motor puede ser más eficiente que un motor reversible ( un motor térmico de Carnot ) que opera entre los mismos depósitos de alta temperatura y baja temperatura.
  2. Las eficiencias de todos los motores reversibles (motores de calor Carnot ) que funcionan entre los mismos depósitos de temperatura constante son los mismos, independientemente de la sustancia de trabajo empleada o los detalles de operación.

El ciclo de este motor se llama ciclo de Carnot . Un sistema que experimenta un ciclo de Carnot se llama motor de calor de Carnot . No es un ciclo termodinámico real, pero es una construcción teórica y no se puede construir en la práctica. Todos los procesos termodinámicos reales son de alguna manera irreversibles . No se realizan de manera infinitamente lenta e infinitamente pequeños pasos de temperatura también son una ficción teórica. Por lo tanto, los motores térmicos deben tener eficiencias más bajas que los límites en su eficiencia debido a la irreversibilidad inherente del ciclo del motor térmico que usan.

Ciclo de Carnot – Procesos

Ciclo de Carnot - ProcesosEn un ciclo de Carnot , el sistema que ejecuta el ciclo experimenta una serie de cuatro procesos internamente reversibles : dos procesos isentrópicos (adiabáticos reversibles) alternados con dos procesos isotérmicos :

  1. compresión isoentrópica – El gas se comprime adiabáticamente del estado 1 al estado 2, donde la temperatura es H . Los alrededores trabajan con el gas, aumentando su energía interna y comprimiéndolo. Por otro lado, la entropía permanece sin cambios .
  2. Isotérmica expansión – El sistema se coloca en contacto con el depósito en H . El gas se expande isotérmicamente mientras recibe energía Q H del depósito caliente por transferencia de calor. La temperatura del gas no cambia durante el proceso. El gas funciona en los alrededores. El cambio total de entropía viene dado por: ∆S = S 1 – S 4 = Q H / T H
  3. expansión isoentrópica – El gas se expande adiabáticamente del estado 3 al estado 4, donde la temperatura es C . El gas funciona en el entorno y pierde una cantidad de energía interna igual al trabajo que abandona el sistema. Nuevamente, la entropía permanece sin cambios.
  4. isotérmica de compresión – El sistema se coloca en contacto con el depósito en C . El gas se comprime isotérmicamente a su estado inicial mientras descarga energía Q C al depósito frío por transferencia de calor. En este proceso, los alrededores trabajan con el gas. El cambio total de entropía viene dado por: ∆S = S 3 – S 2 = Q C / T C

Proceso isentrópico

Un proceso isentrópico es un proceso termodinámico , en el cual la entropía del fluido o gas permanece constante. Significa que el proceso isentrópico es un caso especial de un proceso adiabático en el que no hay transferencia de calor o materia. Es un proceso adiabático reversible . La suposición de que no hay transferencia de calor es muy importante, ya que podemos usar la aproximación adiabática solo en procesos muy rápidos .

Proceso isentrópico y la primera ley

Para un sistema cerrado, podemos escribir la primera ley de la termodinámica en términos de entalpía :

dH = dQ + Vdp

o

dH = TdS + Vdp

Proceso isentrópico (dQ = 0):

dH = Vdp → W = H 2 – H 1     → H 2 – H 1 = p (T 2 – T 1 )     (para gas ideal )

Proceso isentrópico del gas ideal

El proceso isentrópico (un caso especial de proceso adiabático) se puede expresar con la ley de los gases ideales como:

pV κ = constante

o

1 V κ = p 2 V κ

en el que κ = c p / c v es la relación de los calores específicos (o capacidades de calor ) para el gas. Uno para presión constante (c p ) y otro para volumen constante (c v ) . Tenga en cuenta que esta relación κ  = c p / c v es un factor para determinar la velocidad del sonido en un gas y otros procesos adiabáticos.

Proceso isotérmico

Un proceso isotérmico es un proceso termodinámico , en el que la temperatura del sistema permanece constante (T = constante). La transferencia de calor dentro o fuera del sistema generalmente debe ocurrir a una velocidad tan lenta para ajustarse continuamente a la temperatura del depósito a través del intercambio de calor. En cada uno de estos estados se mantiene el equilibrio térmico .

Proceso isotérmico y la primera ley

La forma clásica de la primera ley de la termodinámica es la siguiente ecuación:

dU = dQ – dW

En esta ecuación, dW es igual a dW = pdV y se conoce como el trabajo límite .

En el proceso isotérmico y el gas ideal , todo el calor agregado al sistema se utilizará para hacer el trabajo:

Proceso isotérmico (dU = 0):

dU = 0 = Q – W → W = Q       (para gas ideal)

Proceso isotérmico del gas ideal

El proceso isotérmico  se puede expresar con la ley de los gases ideales como:

pV = constante

o

1 V 1  = p 2 V 2

En un diagrama de pV, el proceso se produce a lo largo de una línea (llamada una isoterma) que tiene la ecuación p = constante / V .

Ver también: Ley de Boyle-Mariotte

Proceso isentrópico - características
Proceso isentrópico – características principales
Proceso isotérmico - características principales
Proceso isotérmico – características principales

Ciclo de Carnot – pV, diagrama Ts

Diagrama Ts del ciclo de Carnot
Diagrama Ts del ciclo de Carnot. El área bajo la curva Ts de un proceso es el calor transferido al sistema durante ese proceso.

El ciclo de Carnot a menudo se representa en un diagrama de presión-volumen ( diagrama pV ) y en un diagrama de temperatura-entropía ( diagrama Ts ).

Cuando se trazan en un diagrama de presión-volumen , los procesos isotérmicos siguen las líneas isotérmicas del gas, los procesos adiabáticos se mueven entre isotermas y el área delimitada por la ruta completa del ciclo representa el trabajo total que se puede hacer durante un ciclo.

El diagrama de temperatura-entropía ( diagrama Ts) en el que el estado termodinámico se especifica mediante un punto en un gráfico con entropía específica (s) como eje horizontal y temperatura absoluta (T) como eje vertical, es el mejor diagrama para describir el comportamiento de un ciclo de Carnot .

Es una herramienta útil y común, particularmente porque ayuda a visualizar la transferencia de calor durante un proceso. Para procesos reversibles (ideales), el área bajo la curva Ts de un proceso es el calor transferido al sistema durante ese proceso.

Eficiencia del ciclo de Carnot

En general, la eficiencia térmica , η º , de cualquier motor de calor se define como la relación de la red de trabajo que hace, W , para el calor de entrada a la alta temperatura, Q H .

fórmula de eficiencia térmica - 1

Dado que la energía se conserva de acuerdo con la primera ley de la termodinámica y la energía no se puede convertir en trabajo por completo, la entrada de calor, Q H , debe ser igual al trabajo realizado, W, más el calor que se debe disipar como calor residual Q C en el ambiente. Por lo tanto, podemos reescribir la fórmula para la eficiencia térmica como:

fórmula de eficiencia térmica - 2

Dado que C = ∆ST C H = ∆ST H , la fórmula para esta eficiencia máxima es:

Fórmula de eficiencia de Carnot

dónde:

  • es la eficiencia del ciclo de Carnot, es decir, es la relación = W / Q H del trabajo realizado por el motor a la energía térmica que ingresa al sistema desde el depósito caliente.
  • C es la temperatura absoluta (Kelvins) del depósito frío,
  • H es la temperatura absoluta (Kelvins) del depósito caliente.

Ver también: causas de ineficiencias

Ejemplo: eficiencia de Carnot para una central eléctrica de carbón

En una moderna planta de energía de carbón , la temperatura del vapor de alta presión (T caliente ) sería de unos 400 ° C (673K) y T frío , la temperatura de agua de la torre de refrigeración, sería de alrededor de 20 ° C (293 K). Para este tipo de planta de energía, la eficiencia máxima (ideal) será:

η th = 1 – T frío / T caliente = 1 – 293/673 = 56%

Debe agregarse, esta es una eficiencia idealizada . La eficiencia de Carnot es válida para procesos reversibles. Estos procesos no pueden lograrse en ciclos reales de centrales eléctricas. La eficiencia de Carnot dicta que se pueden lograr mayores eficiencias aumentando la temperatura del vapor. Esta característica es válida también para ciclos termodinámicos reales. Pero esto requiere un aumento de las presiones dentro de las calderas o generadores de vapor . Sin embargo, las consideraciones metalúrgicas ponen límites superiores a tales presiones. Las plantas de energía de combustible fósil subcrítico, que funcionan bajo presión crítica (es decir, por debajo de 22.1 MPa), pueden lograr una eficiencia de 36 a 40%. Diseños supercríticos, que funcionan a presión supercrítica(es decir, superior a 22.1 MPa), tienen eficiencias alrededor del 43%. Las centrales eléctricas de carbón más eficientes y también muy complejas que funcionan a presiones “ultra críticas” (es decir, alrededor de 30 MPa) y usan recalentamiento de etapas múltiples alcanzan aproximadamente el 48% de eficiencia.

Ver también: Reactor supercrítico

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

Qué es el proceso isobárico – Ecuación de gas ideal – Definición

Proceso isobárico: ecuación de gas ideal. El proceso isobárico se puede expresar con la ley de los gases ideales como: V / T = constante. Ingenieria termal

Proceso isobárico: ecuación de gas ideal

Ver también: ¿Qué es un gas ideal?

proceso isobárico - trabajo - diagrama pV
En un diagrama pV, el proceso ocurre a lo largo de una línea horizontal (llamada isobar) que tiene la ecuación p = constante.

Supongamos una adición de calor isobárico en un gas ideal. En un gas ideal , las moléculas no tienen volumen y no interactúan. Según la ley de los gases ideales , la presión varía linealmente con la temperatura y la cantidad, e inversamente con el volumen .

pV = nRT

dónde:

  • p es la presión absoluta del gas
  • n es la cantidad de sustancia
  • T es la temperatura absoluta
  • V es el volumen
  • R  es la constante de gas ideal, o universal, igual al producto de la constante de Boltzmann y la constante de Avogadro,

En esta ecuación, el símbolo R es una constante llamada constante de gas universal que tiene el mismo valor para todos los gases, es decir, R = 8.31 J / mol K.

El proceso isobárico se puede expresar con la ley de los gases ideales como:

proceso isobárico - ecuación - 2

o

proceso isobárico - ecuación - 3

En un diagrama pV , el proceso ocurre a lo largo de una línea horizontal (llamada isobar) que tiene la ecuación p = constante.

El trabajo de presión-volumen del sistema cerrado se define como:

trabajo pV - proceso isobárico

Suponiendo que la cantidad de gas ideal permanece constante y aplicando la ley del gas ideal , esto se convierte en

proceso isobárico - ecuación de trabajo

Según el modelo de gas ideal, la energía interna se puede calcular mediante:

∆U = mc v ∆T

donde la propiedad v (J / mol K) se denomina calor específico (o capacidad calorífica ) a un volumen constante porque, bajo ciertas condiciones especiales (volumen constante), relaciona el cambio de temperatura de un sistema con la cantidad de energía agregada por transferencia de calor.

Al sumar estas ecuaciones, obtenemos la ecuación para el calor:

Q =   mc v ∆T + m R ∆T = m (c v + R) ∆T = m c p ∆T

donde la propiedad p (J / mol K) se denomina calor específico (o capacidad calorífica ) a una presión constante.

Ver también: Calor específico a volumen constante y presión constante

Ver también: fórmula de Mayer

Proceso isobárico - características principales
Proceso isobárico – características principales
La Ley de Charles es una de las leyes del gas.
Para una masa fija de gas a presión constante, el volumen es directamente proporcional a la temperatura Kelvin. Fuente: grc.nasa.gov La política de derechos de autor de la NASA establece que “el material de la NASA no está protegido por derechos de autor a menos que se indique lo contrario”.

Ley de Charles

La Ley de Charles es una de las leyes del gas. A finales del siglo XVIII, el inventor y científico francés Jacques Alexandre César Charles estudió la relación entre el volumen y la temperatura de un gas a presión constante . Los resultados de ciertos experimentos con gases a una presión relativamente baja llevaron a Jacques Alexandre César Charles a formular una ley bien conocida. Se afirma que:

Para una masa fija de gas a presión constante, el volumen es directamente proporcional a la temperatura Kelvin.

Eso significa que, por ejemplo, si duplica la temperatura, duplicará el volumen. Si reduce a la mitad la temperatura, reducirá a la mitad el volumen.

Puede expresar esto matemáticamente como:

V = constante. T

Sí, parece ser idéntico al proceso isobárico del gas ideal. Estos resultados son totalmente consistentes con la ley del gas ideal , que determina que la constante es igual a nR / p . Si reorganiza la ecuación pV = nRT dividiendo ambos lados por p, obtendrá:

V = nR / p. T

donde nR / p es constante y:

  • p es la presión absoluta del gas
  • n es la cantidad de sustancia
  • T es la temperatura absoluta
  • V es el volumen
  • R  es la constante de gas ideal, o universal, igual al producto de la constante de Boltzmann y la constante de Avogadro,

En esta ecuación, el símbolo R es una constante llamada constante de gas universal que tiene el mismo valor para todos los gases, es decir, R = 8.31 J / mol K.

 

 

 

 

 

 

 

 

 

 

 

 

 

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es el proceso isotérmico y el proceso adiabático? Definición

Un proceso adiabático no es necesariamente un proceso isotérmico, ni un proceso isotérmico es necesariamente adiabático. Características de los procesos adiabáticos e isotérmicos. Ingenieria termal

 

Proceso isotérmico

+ Características del proceso isotérmico

Un proceso isotérmico es un proceso termodinámico , en el que la temperatura del sistema permanece constante (T = constante). La transferencia de calor dentro o fuera del sistema generalmente debe ocurrir a una velocidad tan lenta para ajustarse continuamente a la temperatura del depósito a través del intercambio de calor. En cada uno de estos estados se mantiene el equilibrio térmico .Para un proceso ideal de gas y politrópico, el caso n = 1 corresponde a un proceso isotérmico (temperatura constante). A diferencia del proceso adiabático , en el que n = κ   y un sistema no intercambia calor con su entorno (Q = 0; ∆T ≠ 0 , en un proceso isotérmico no hay cambio en la energía interna (debido a ∆T = 0 ) y, por lo tanto, ΔU = 0 (para gases ideales) y Q ≠ 0. Un proceso adiabático no es necesariamente un proceso isotérmico, ni un proceso isotérmico es necesariamente adiabático.

En ingeniería, los cambios de fase, como la evaporación o la fusión, son procesos isotérmicos cuando, como suele ser el caso, ocurren a presión y temperatura constantes.

Proceso isotérmico y la primera ley

La forma clásica de la primera ley de la termodinámica es la siguiente ecuación:

dU = dQ – dW

En esta ecuación, dW es igual a dW = pdV y se conoce como el trabajo límite .

En el proceso isotérmico y el gas ideal , todo el calor agregado al sistema se utilizará para hacer el trabajo:

Proceso isotérmico (dU = 0):

dU = 0 = Q – W → W = Q       (para gas ideal)

El proceso isotérmico  se puede expresar con la ley de los gases ideales como:

pV = constante

o

1 V 1  = p 2 V 2

En un diagrama de pV, el proceso se produce a lo largo de una línea (llamada una isoterma) que tiene la ecuación p = constante / V .

Proceso adiabático

+ Características del proceso adiabático.

Un proceso adiabático es un proceso termodinámico , en el que no hay transferencia de calor dentro o fuera del sistema (Q = 0). El sistema puede considerarse perfectamente aislado . En un proceso adiabático, la energía se transfiere solo como trabajo. La suposición de que no hay transferencia de calor es muy importante, ya que podemos usar la aproximación adiabática solo en procesos muy rápidos . En estos procesos rápidos, no hay tiempo suficiente para que la transferencia de energía como calor tenga lugar hacia o desde el sistema.En dispositivos reales (como turbinas, bombas y compresores) se producen pérdidas de calor y pérdidas en el proceso de combustión, pero estas pérdidas suelen ser bajas en comparación con el flujo de energía general y podemos aproximar algunos procesos termodinámicos por el proceso adiabático.

Proceso adiabático y la primera ley

Para un sistema cerrado, podemos escribir la  primera ley de la termodinámica en términos de entalpía :

dH = dQ + Vdp

En esta ecuación, el término Vdp es un proceso de flujo de trabajo . Este trabajo, Vdp, se utiliza para sistemas de flujo abierto como una turbina o una bomba en la que hay un “dp”, es decir, un cambio de presión. Como puede verse, esta forma de ley simplifica la descripción de la transferencia de energía . En el proceso adiabático, el cambio de entalpía es igual al trabajo del proceso de flujo realizado en o por el sistema:

Proceso adiabático (dQ = 0):

dH = Vdp → W = H 2 – H 1     → H 2 – H 1 = p (T 2 – T 1 )     (para un  gas ideal )

Expansión adiabática

Diagrama PV - proceso adiabático
Suponga una expansión adiabática de helio (3 → 4) en una turbina de gas (ciclo de Brayton).

Expansión Gratis – Expansión Joule

Estos son procesos adiabáticos en los que no se produce transferencia de calor entre el sistema y su entorno y no se realiza ningún trabajo en el sistema. Estos tipos de procesos adiabáticos se denominan expansión libre . Es un proceso irreversible en el que un gas se expande en una cámara de evacuación aislada. También se llama expansión Joule . Para un gas ideal, la temperatura no cambia (esto significa que el proceso también es isotérmico ) , sin embargo, los gases reales experimentan un cambio de temperatura durante la expansión libre. En expansión libre, Q = W = 0, y la primera ley requiere que:

dE int = 0

No se puede trazar una expansión libre en un diagrama PV, porque el proceso es rápido, no cuasiestático. Los estados intermedios no son estados de equilibrio y, por lo tanto, la presión no está claramente definida.

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.

¿Qué es el proceso isobárico? Definición

Un proceso isobárico o un proceso de presión constante es un proceso termodinámico, en el que la presión del sistema permanece constante (p = const). Ingenieria termal

Proceso isobárico

Un proceso isobárico es un proceso termodinámico , en el cual la presión del sistema permanece constante (p = const). La transferencia de calor dentro o fuera del sistema funciona, pero también cambia la energía interna del sistema.

Dado que hay cambios en la energía interna (dU) y cambios en el volumen del sistema (∆V), los ingenieros a menudo usan la entalpía del sistema, que se define como:

H = U + pV

En muchos análisis termodinámicos es conveniente utilizar la entalpía en lugar de la energía interna. Especialmente en el caso de la primera ley de la termodinámica .

La entalpía es la expresión preferida de la energía del sistema que cambia en muchas mediciones químicas, biológicas y físicas a presión constante . Es tan útil que está tabulado en las tablas de vapor junto con un volumen específico y una energía interna específica . Es debido al hecho, simplifica la descripción de la transferencia de energía . A presión constante, el cambio de entalpía es igual a la energía transferida desde el medio ambiente a través del calentamiento (Q = H 2 – H 1 ) u otro trabajo que no sea el trabajo de expansión. Para un proceso de presión variable, la diferencia en entalpía no es tan obvia.

Hay expresiones en términos de variables más familiares como temperatura y presión :

dH = C p dT + V (1-αT) dp

Donde p es la capacidad calorífica a presión constante y α es el coeficiente de expansión térmica (cúbica). Para gas ideal αT = 1 y por lo tanto:

dH = C p dT

Para un proceso ideal de gas y politrópico, el caso n = 0 corresponde a un proceso isobárico (presión constante). A diferencia del proceso adiabático, en el que n =  y un sistema no intercambia calor con su entorno (Q = 0; ∆T ≠ 0 , en un proceso isobárico hay un cambio en la energía interna (debido a ∆T ≠ 0) y por lo tanto ΔU ≠ 0 (para gases ideales) y Q ≠ 0.

En ingeniería, ambos ciclos termodinámicos muy importantes (ciclo de Brayton y Rankine ) se basan en dos procesos isobáricos, por lo tanto, el estudio de este proceso es crucial para las centrales eléctricas.

Proceso isobárico - características principales
Proceso isobárico – características principales
La Ley de Charles es una de las leyes del gas.
Para una masa fija de gas a presión constante, el volumen es directamente proporcional a la temperatura Kelvin. Fuente: grc.nasa.gov La política de derechos de autor de la NASA establece que “el material de la NASA no está protegido por derechos de autor a menos que se indique lo contrario”.

Proceso isobárico y la primera ley

La forma clásica de la primera ley de la termodinámica es la siguiente ecuación:

dU = dQ – dW

En esta ecuación, dW es igual a dW = pdV y se conoce como el trabajo límite .

En un proceso isobárico y el gas ideal, parte del calor agregado al sistema se utilizará para hacer el trabajo y parte del calor agregado aumentará la energía interna (aumentará la temperatura). Por lo tanto, es conveniente utilizar la entalpía en lugar de la energía interna. Dado que H = U + pV , entonces dH = dU + pdV + Vdp y sustituimos dU = dH – pdV – Vdp en la forma clásica de la ley:

dH – pdV – Vdp = dQ – pdV

Obtenemos la ley en términos de entalpía :

dH = dQ + Vdp

o

dH = TdS + Vdp

En esta ecuación, el término Vdp es un proceso de flujo de trabajo. Este trabajo,   Vdp , se utiliza para sistemas de flujo abierto como una turbina o una bomba en la que hay un “dp” , es decir, un cambio de presión. No hay cambios en el volumen de control . Como puede verse, esta forma de ley simplifica la descripción de la transferencia de energía . A presión constante , el cambio de entalpía es igual a la energía transferida del ambiente a través del calentamiento:

Proceso isobárico (Vdp = 0):

dH = dQ      →      Q = H 2 – H 1

En una entropía constante , es decir, en un proceso isentrópico, el cambio de entalpía equivale al trabajo del proceso de flujo realizado en o por el sistema.

Proceso isentrópico (dQ = 0):

dH = Vdp → W = H 2 – H 1

Es obvio, será muy útil en el análisis de los dos ciclos termodinámicos utilizados en la ingeniería de potencia, es decir, en el ciclo Brayton y el ciclo Rankine.

Proceso isobárico: ecuación de gas ideal

Ver también: ¿Qué es un gas ideal?

proceso isobárico - trabajo - diagrama pV
En un diagrama pV, el proceso ocurre a lo largo de una línea horizontal (llamada isobar) que tiene la ecuación p = constante.

Supongamos una adición de calor isobárico en un gas ideal. En un gas ideal , las moléculas no tienen volumen y no interactúan. Según la ley de los gases ideales , la presión varía linealmente con la temperatura y la cantidad, e inversamente con el volumen .

pV = nRT

dónde:

  • p es la presión absoluta del gas
  • n es la cantidad de sustancia
  • T es la temperatura absoluta
  • V es el volumen
  • R  es la constante de gas ideal, o universal, igual al producto de la constante de Boltzmann y la constante de Avogadro,

En esta ecuación, el símbolo R es una constante llamada constante de gas universal que tiene el mismo valor para todos los gases, es decir, R = 8.31 J / mol K.

El proceso isobárico se puede expresar con la ley de los gases ideales como:

proceso isobárico - ecuación - 2

o

proceso isobárico - ecuación - 3

En un diagrama pV , el proceso ocurre a lo largo de una línea horizontal (llamada isobar) que tiene la ecuación p = constante.

El trabajo de presión-volumen del sistema cerrado se define como:

trabajo pV - proceso isobárico

Suponiendo que la cantidad de gas ideal permanece constante y aplicando la ley del gas ideal , esto se convierte en

proceso isobárico - ecuación de trabajo

Según el modelo de gas ideal, la energía interna se puede calcular mediante:

∆U = mc v ∆T

donde la propiedad v (J / mol K) se denomina calor específico (o capacidad calorífica ) a un volumen constante porque, bajo ciertas condiciones especiales (volumen constante), relaciona el cambio de temperatura de un sistema con la cantidad de energía agregada por transferencia de calor.

Al sumar estas ecuaciones, obtenemos la ecuación para el calor:

Q =   mc v ∆T + m R ∆T = m (c v + R) ∆T = m c p ∆T

donde la propiedad p (J / mol K) se denomina calor específico (o capacidad calorífica ) a una presión constante.

Ver también: Calor específico a volumen constante y presión constante

Ver también: fórmula de Mayer

Ley de carlos

La Ley de Charles es una de las leyes del gas. A finales del siglo XVIII, el inventor y científico francés Jacques Alexandre César Charles estudió la relación entre el volumen y la temperatura de un gas a presión constante . Los resultados de ciertos experimentos con gases a una presión relativamente baja llevaron a Jacques Alexandre César Charles a formular una ley bien conocida. Se afirma que:

Para una masa fija de gas a presión constante, el volumen es directamente proporcional a la temperatura Kelvin.

Eso significa que, por ejemplo, si duplica la temperatura, duplicará el volumen. Si reduce a la mitad la temperatura, reducirá a la mitad el volumen.

Puede expresar esto matemáticamente como:

V = constante. T

Sí, parece ser idéntico al proceso isobárico del gas ideal. Estos resultados son totalmente consistentes con la ley del gas ideal , que determina que la constante es igual a nR / p . Si reorganiza la ecuación pV = nRT dividiendo ambos lados por p, obtendrá:

V = nR / p. T

donde nR / p es constante y:

  • p es la presión absoluta del gas
  • n es la cantidad de sustancia
  • T es la temperatura absoluta
  • V es el volumen
  • R  es la constante de gas ideal, o universal, igual al producto de la constante de Boltzmann y la constante de Avogadro,

En esta ecuación, el símbolo R es una constante llamada constante de gas universal que tiene el mismo valor para todos los gases, es decir, R = 8.31 J / mol K.

Ejemplo de proceso isobárico: adición de calor isobárico

primera ley - ejemplo - ciclo de brayton
El ciclo ideal de Brayton consiste en cuatro procesos termodinámicos. Dos procesos isentrópicos y dos procesos isobáricos.

Supongamos el  ciclo Brayton ideal  que describe el funcionamiento de un  motor de calor a presión constante  . Los modernos  motores de turbina de gas y los motores de  inyección de aire  también siguen el ciclo Brayton.

El ciclo ideal de Brayton consiste en cuatro procesos termodinámicos. Dos procesos isentrópicos y dos procesos isobáricos.

  1. Compresión isentrópica  : el aire ambiente ingresa al compresor, donde se presuriza (1 → 2). El trabajo requerido para el compresor viene dado por  C  = H 2  – H 1 .
  2. adición de calor isobárico  : el aire comprimido pasa a través de una cámara de combustión, donde se quema el combustible y se calienta el aire u otro medio (2 → 3). Es un proceso de presión constante, ya que la cámara está abierta para fluir hacia adentro y hacia afuera. El calor neto agregado viene dado por  add  = H  – H 2
  3. Expansión isentrópica  : el aire calentado y presurizado se expande en la turbina y abandona su energía. El trabajo realizado por la turbina viene dado por  T  = H 4  – H 3
  4. rechazo de calor isobárico  : el calor residual debe rechazarse para cerrar el ciclo. El calor neto rechazado viene dado por  re  = H  – H 1

Suponga una adición de calor isobárico (2 → 3) en un intercambiador de calor. En las turbinas de gas típicas, la etapa de alta presión recibe gas (punto 3 en la figura; p 3 = 6,7 MPa ; T 3 = 1190 K (917 ° C)) de un intercambiador de calor. Además, sabemos que el compresor recibe gas (punto 1 en la figura; p 1 = 2.78 MPa ; T 1 = 299 K (26 ° C)) y sabemos que la eficiencia isentrópica del compresor es η K = 0.87 (87 %) .

Calcule el calor agregado por el intercambiador de calor (entre 2 → 3).

Solución:

A partir de la primera ley de la termodinámica , el calor neto agregado viene dado por add = H 3 – H 2 o add = C p . (T 3 -T 2s ), pero en este caso no sabemos la temperatura (T 2s ) a la salida del compresor. Resolveremos este problema en variables intensivas. Tenemos que reescribir la ecuación anterior (para incluir η K ) usando el término (+ 1 – h 1 ) para:

add = 3 – h 2 = h 3 – h 1 – (h 2s – h 1 ) / η K  

add = c p (T 3 -T 1 ) – (c p (T 2s -T 1 ) η K )

Luego calcularemos la temperatura, T 2s , usando p, V, T Relación para el proceso adiabático entre (1 → 2).

Relación p, V, T - proceso isentrópico

En esta ecuación, el factor para helio es igual a = c p / c v = 1.66 . De la ecuación anterior se deduce que la temperatura de salida del compresor, T 2s , es:

proceso isobárico - ejemplo

Según la Ley del Gas Ideal , sabemos que el calor específico molar de un gas ideal monoatómico es:

v = 3 / 2R = 12.5 J / mol K y C p = C v + R = 5 / 2R = 20.8 J / mol K

Transferimos las capacidades de calor específicas en unidades de J / kg K a través de:

p = C p . 1 / M (peso molar de helio) = 20.8 x 4.10 -3 = 5200 J / kg K

Usando esta temperatura y la eficiencia del compresor isentrópico , podemos calcular el calor agregado por el intercambiador de calor:

add = c p (T 3 -T 1 ) – (c p (T 2s -T 1 ) η K ) = 5200. (1190 – 299) – 5200. (424-299) /0.87 = 4.633 MJ / kg – 0.747 MJ / kg = 3.886 MJ / kg

¿Qué es la teoría del ciclo diesel? Motor diesel: definición

Teoría del ciclo diesel – Motor diesel. El ciclo diesel consta de cuatro procesos termodinámicos. La eficiencia térmica depende de la relación de compresión y la relación de capacidad calorífica. Ingenieria termal

Ciclo Diesel – Motor Diesel

En la década de 1890, un inventor alemán, Rudolf Diesel, patentó su invención de un motor de combustión interna eficiente, de combustión lenta y encendido por compresión. El ciclo original propuesto por Rudolf Diesel fue un ciclo de temperatura constante. En años posteriores, Diesel se dio cuenta de que su ciclo original no funcionaría y adoptó el ciclo de presión constante, que se conoce como el ciclo de Diesel .

El ciclo diesel es uno de los ciclos termodinámicos más comunes que se pueden encontrar en los motores de automóviles y describe el funcionamiento de un motor de pistón de encendido por compresión típico. El motor Diesel es similar en operación al motor de gasolina. La diferencia más importante es que:

  • No hay combustible en el cilindro al comienzo de la carrera de compresión, por lo tanto, no se produce una autoignición en los motores Diesel.
  • El motor diesel usa encendido por compresión en lugar de encendido por chispa.
  • Debido a la alta temperatura desarrollada durante la compresión adiabática, el combustible se enciende espontáneamente a medida que se inyecta. Por lo tanto, no se necesitan bujías.
  • Antes del comienzo de la carrera de potencia, los inyectores comienzan a inyectar combustible directamente en la cámara de combustión y, por lo tanto, la primera parte de la carrera de potencia se produce aproximadamente a la presión constante.
  • Se pueden lograr relaciones de compresión más altas en motores Diesel que en motores Otto

El motor Diesel es similar en operación al motor de gasolina. En esta imagen, hay un motor Otto, que se enciende mediante una bujía en lugar de la compresión misma.

Motor de cuatro tiempos - motor Otto
Motor de cuatro tiempos – Motor Otto
Fuente: wikipedia.org, Trabajo propio de Zephyris, CC BY-SA 3.0
A diferencia del ciclo Otto , el ciclo Diesel no ejecuta la adición de calor isocrórico. En un ciclo Diesel ideal, el sistema que ejecuta el ciclo se somete a una serie de cuatro procesos: dos procesos isentrópicos (adiabáticos reversibles) alternados con un proceso isocrórico y un proceso isobárico.Dado que el principio de Carnot establece que ningún motor puede ser más eficiente que un motor reversible ( un motor térmico de Carnot ) que opera entre los mismos depósitos de alta temperatura y baja temperatura, el motor Diesel debe tener una eficiencia menor que la eficiencia de Carnot. Un motor automotriz diesel típico opera con alrededor del 30% al 35% de eficiencia térmica. Aproximadamente 65-70% se rechaza como calor residual sin convertirse en trabajo útil, es decir, trabajo entregado a las ruedas. En general, los motores que usan el ciclo Diesel suelen ser más eficientes que los motores que usan el ciclo Otto. El motor diesel tiene la mayor eficiencia térmica de cualquier motor de combustión práctico. Motores diesel de baja velocidad(como se usa en los barcos) puede tener una eficiencia térmica que excede el 50% . El motor diésel más grande del mundo alcanza el 51,7%.

Ciclo Diesel – Procesos

En un ciclo Diesel ideal, el sistema que ejecuta el ciclo se somete a una serie de cuatro procesos: dos procesos isentrópicos (adiabáticos reversibles) alternados con un proceso isocrórico y un proceso isobárico.

  • diagrama pV de un ciclo diésel ideal
    diagrama pV de un ciclo diésel ideal

    Compresión isentrópica (carrera de compresión): el aire se comprime adiabáticamente desde el estado 1 al estado 2, a medida que el pistón se mueve desde el punto muerto inferior al punto muerto superior. Los alrededores trabajan con el gas, aumentando su energía interna (temperatura) y comprimiéndolo. Por otro lado, la entropía permanece sin cambios. Los cambios en los volúmenes y su relación ( 1 / V 2 ) se conocen como la relación de compresión.

  • Expansión isobárica (fase de ignición): en esta fase (entre el estado 2 y el estado 3) hay una transferencia de calor a presión constante (modelo idealizado) al aire desde una fuente externa (combustión del combustible inyectado) mientras el pistón se mueve hacia el V 3 . Durante el proceso de presión constante, la energía ingresa al sistema a medida que se agrega calor Q , y una parte del trabajo se realiza moviendo el pistón.
  • Expansión isentrópica (golpe de poder): el gas se expande adiabáticamente desde el estado 3 al estado 4, a medida que el pistón se mueve desde V 3 hasta el punto muerto inferior. El gas funciona en el entorno (pistón) y pierde una cantidad de energía interna igual al trabajo que abandona el sistema. Nuevamente, la entropía permanece sin cambios. La relación de volumen ( 4 / V 3 ) se conoce como la relación de expansión isentrópica.
  • Descompresión isocórica (carrera de escape) : en esta fase, el ciclo se completa con un proceso de volumen constante en el que el calor se rechaza del aire mientras el pistón está en el punto muerto inferior. La presión de gas de trabajo cae instantáneamente desde el punto 4 al punto 1. La válvula de escape se abre en el punto 4. La carrera de escape se produce directamente después de esta descompresión. A medida que el pistón se mueve desde el punto muerto inferior (punto 1) al punto muerto superior (punto 0) con la válvula de escape abierta, la mezcla gaseosa se ventila a la atmósfera y el proceso comienza de nuevo.

Durante el ciclo Diesel, el pistón realiza el trabajo en el gas entre los estados 1 y 2 ( compresión sentrópica ). El gas en el pistón realiza el trabajo entre las etapas 2 y 3 ( adición de calor sobárico ) y entre las etapas 2 y 3 ( expansión sentrópica ). La diferencia entre el trabajo realizado por el gas y el trabajo realizado sobre el gas es el trabajo neto producido por el ciclo y corresponde al área encerrada por la curva del ciclo. El trabajo producido por el ciclo multiplicado por la velocidad del ciclo (ciclos por segundo) es igual a la potencia producida por el motor Diesel.

Proceso isentrópico

Un proceso isentrópico es un proceso termodinámico , en el cual la entropía del fluido o gas permanece constante. Significa que el proceso isentrópico es un caso especial de un proceso adiabático en el que no hay transferencia de calor o materia. Es un proceso adiabático reversible . La suposición de que no hay transferencia de calor es muy importante, ya que podemos usar la aproximación adiabática solo en procesos muy rápidos .

Proceso isentrópico y la primera ley

Para un sistema cerrado, podemos escribir la primera ley de la termodinámica en términos de entalpía :

dH = dQ + Vdp

o

dH = TdS + Vdp

Proceso isentrópico (dQ = 0):

dH = Vdp → W = H 2 – H 1     → H 2 – H 1 = p (T 2 – T 1 )     (para gas ideal )

Proceso isentrópico del gas ideal

El proceso isentrópico (un caso especial de proceso adiabático) se puede expresar con la ley de los gases ideales como:

pV κ = constante

o

1 V κ = p 2 V κ

en el que κ = c p / c v es la relación de los calores específicos (o capacidades de calor ) para el gas. Uno para presión constante (c p ) y otro para volumen constante (c v ) . Tenga en cuenta que esta relación κ  = c p / c v es un factor para determinar la velocidad del sonido en un gas y otros procesos adiabáticos.

Proceso isocorico

Un proceso isocrórico es un proceso termodinámico, en el que el volumen del sistema cerrado permanece constante (V = constante). Describe el comportamiento del gas dentro del contenedor, que no puede deformarse. Como el volumen permanece constante, la transferencia de calor dentro o fuera del sistema no funciona con el p∆V , sino que solo cambia la energía interna (la temperatura) del sistema.

Proceso isocrórico y la primera ley

La forma clásica de la primera ley de la termodinámica es la siguiente ecuación:

dU = dQ – dW

En esta ecuación, dW es igual a dW = pdV y se conoce como el trabajo límite . Luego:

dU = dQ – pdV

En el proceso isocrórico y el gas ideal , todo el calor agregado al sistema se utilizará para aumentar la energía interna.

Proceso isocórico (pdV = 0):

dU = dQ     (para gas ideal)

dU = 0 = Q – W → W = Q       (para gas ideal)

Proceso isocrórico del gas ideal

El proceso isocrórico se puede expresar con la ley de los gases ideales como:

proceso isocrórico - ecuación 1

o

proceso isocrórico - ecuación 2

En un diagrama pV , el proceso ocurre a lo largo de una línea horizontal que tiene la ecuación V = constante.

Ver también:  Ley de Guy-Lussac

Proceso isobárico

Un proceso isobárico es un proceso termodinámico , en el cual la presión del sistema permanece constante (p = const). La transferencia de calor dentro o fuera del sistema funciona, pero también cambia la energía interna del sistema.

Dado que hay cambios en la energía interna (dU) y cambios en el volumen del sistema (∆V), los ingenieros a menudo usan la entalpía del sistema, que se define como:

H = U + pV

Proceso isobárico y la primera ley

La forma clásica de la primera ley de la termodinámica es la siguiente ecuación:

dU = dQ – dW

En esta ecuación, dW es igual a dW = pdV y se conoce como el trabajo límite . En un proceso isobárico y el gas ideal, parte del calor agregado al sistema se utilizará para hacer el trabajo y parte del calor agregado aumentará la energía interna (aumentará la temperatura). Por lo tanto, es conveniente utilizar la entalpía en lugar de la energía interna.

Proceso isobárico (Vdp = 0):

dH = dQ → Q = H 2 – H 1

En una entropía constante , es decir, en un proceso isentrópico, el cambio de entalpía equivale al trabajo del proceso de flujo realizado en o por el sistema.

Proceso isobárico del gas ideal

El proceso isobárico se puede expresar con la ley de los gases ideales como:

proceso isobárico - ecuación - 2

o

proceso isobárico - ecuación - 3

En un diagrama pV , el proceso ocurre a lo largo de una línea horizontal (llamada isobar) que tiene la ecuación p = constante.

Ver también: Ley de Charles

Proceso isentrópico - características
Proceso isentrópico – características principales
Proceso isocrórico - características principales
Proceso isocrórico – características principales
Proceso isobárico - características principales
Proceso isobárico – características principales

Comparación de ciclos diésel reales e ideales

Ciclo diésel actual - Motor diéselEn este artículo se muestra un ciclo Diesel ideal en el que hay muchos supuestos que difieren del ciclo Diesel real . Las principales diferencias entre el motor Diesel real e ideal aparecen en la figura. En realidad, el ciclo ideal no ocurre y hay muchas pérdidas asociadas con cada proceso. Para un ciclo real, la forma del diagrama pV es similar al ideal, pero el área (trabajo) encerrada en el diagrama pV siempre es menor que el valor ideal. El ciclo ideal de Diesel se basa en los siguientes supuestos:

  • Ciclo cerrado : la mayor diferencia entre los dos diagramas es la simplificación de las carreras de admisión y escape en el ciclo ideal. En la carrera de escape, el calor Q a cabo se expulsa al medio ambiente (en un motor real, las hojas de gas del motor y se sustituye por una nueva mezcla de aire y combustible).
  • Adición de calor isobárico . En motores reales, la adición de calor nunca es isobárica.
  • Sin transferencia de calor
    • Compresión: el gas se comprime adiabáticamente del estado 1 al estado 2. En los motores reales, siempre hay algunas ineficiencias que reducen la eficiencia térmica.
    • Expansión. El gas se expande adiabáticamente desde el estado 3 al estado 4.
  • Combustión completa de la mezcla.
  • Sin trabajo de bombeo . El trabajo de bombeo es la diferencia entre el trabajo realizado durante la carrera de escape y el trabajo realizado durante la carrera de admisión. En ciclos reales, hay una diferencia de presión entre las presiones de escape y de entrada.
  • Sin pérdida por purga . La pérdida por purga es causada por la apertura temprana de las válvulas de escape. Esto da como resultado una pérdida de producción de trabajo durante la carrera de expansión.
  • Sin pérdidas por golpe . La pérdida por soplado es causada por la fuga de gases comprimidos a través de anillos de pistón y otras grietas.
  • Sin pérdidas por fricción .

Estos supuestos y pérdidas simplificadores conducen al hecho de que el área cerrada (trabajo) del diagrama pV para un motor real es significativamente menor que el tamaño del área (trabajo) encerrada en el diagrama pV del ciclo ideal. En otras palabras, el ciclo ideal del motor sobreestimará el trabajo neto y, si los motores funcionan a la misma velocidad, una mayor potencia producida por el motor real en aproximadamente un 20% (de manera similar al caso del motor Otto).

Eficiencia térmica para ciclo diésel

En general, la eficiencia térmica , η º , de cualquier motor de calor se define como la relación de la obra lo hace, W , para el calor de entrada a la alta temperatura, Q H .

fórmula de eficiencia térmica - 1

La eficiencia térmica , η th , representa la fracción de calor , H , que se convierte en trabajo . Dado que la energía se conserva de acuerdo con la primera ley de la termodinámica y la energía no se puede convertir en trabajo por completo, la entrada de calor, Q H , debe ser igual al trabajo realizado, W, más el calor que se debe disipar como calor residual Q C en el ambiente. Por lo tanto, podemos reescribir la fórmula para la eficiencia térmica como:

fórmula de eficiencia térmica - 2

El calor absorbido ocurre durante la combustión de la mezcla de combustible y aire, cuando se produce la chispa, aproximadamente a un volumen constante. Dado que durante un proceso isocrórico no hay trabajo realizado por o sobre el sistema, la primera ley de la termodinámica dicta ∆U = ∆Q. Por lo tanto, el calor agregado y rechazado están dados por:

add = mc p (T 3 – T 2 )

out = mc v (T 4 – T 1 )

Sustituyendo estas expresiones por el calor agregado y rechazado en la expresión por rendimientos de eficiencia térmica:

Esta ecuación se puede reorganizar a la forma con la relación de compresión y la relación de corte:

dónde

  • η Diesel es la máxima eficiencia térmica de un ciclo Diesel
  • α es la relación de corte V 3 / V 2 (es decir, la relación de volúmenes al final y al inicio de la fase de combustión)
  • CR es la relación de compresión
  • κ = c p / c v = 1.4

Es una conclusión muy útil, porque es deseable lograr una alta relación de compresión para extraer más energía mecánica de una masa dada del combustible. Como hemos concluido en la sección anterior, la eficiencia térmica del ciclo Otto estándar de aire también es una función de la relación de compresión y κ.

eficiencia térmica - Ciclo Otto - Relación de compresión

Cuando los comparamos con las fórmulas, se puede ver que para una relación de compresión (CR) dada, el ciclo Otto será más eficiente que el ciclo Diesel. Pero los motores diésel suelen ser más eficientes, ya que pueden funcionar a relaciones de compresión más altas.

En los motores Otto comunes, la relación de compresión tiene sus límites. La relación de compresión en un motor de gasolina generalmente no será mucho mayor que 10: 1. Las relaciones de compresión más altas harán que los motores de gasolina estén sujetos a golpes de motor, causados ​​por la autoignición de una mezcla no quemada, si se usa combustible con menor octanaje. En los motores diesel, existe un riesgo mínimo de autoignición del combustible, porque los motores diesel son motores de encendido por compresión y no hay combustible en el cilindro al comienzo de la carrera de compresión.

Ciclo diésel: problema con la solución

diagrama pV de un ciclo diésel ideal
diagrama pV de un ciclo diésel ideal

Supongamos el ciclo Diesel, que es uno de los ciclos termodinámicos más comunes que se pueden encontrar en los motores de automóviles . Uno de los parámetros clave de tales motores es el cambio en los volúmenes entre el punto muerto superior (TDC) y el punto muerto inferior (BDC). La relación de estos volúmenes ( 1 / V 2 ) se conoce como la relación de compresión . También la relación de corte V 3 / V 2 , que es la relación de volúmenes al final y al inicio de la fase de combustión.

En este ejemplo, supongamos el ciclo Diesel con una relación de compresión de CR = 20: 1 y una relación de corte α = 2. El aire está a 100 kPa = 1 bar, 20 ° C (293 K) y el volumen de la cámara es 500 cm³ antes de la carrera de compresión.

  • Capacidad calorífica específica a presión constante del aire a presión atmosférica y temperatura ambiente: p = 1,01 kJ / kgK.
  • Capacidad calorífica específica a volumen constante de aire a presión atmosférica y temperatura ambiente: v = 0.718 kJ / kgK.
  • κ = c p / c v = 1.4

Calcular:

  1. la masa de aire de admisión
  2. la temperatura T 2
  3. la presión p 2
  4. la temperatura T 3
  5. la cantidad de calor agregado al quemar la mezcla de combustible y aire
  6. la eficiencia térmica de este ciclo
  7. el eurodiputado

Solución:

1)

Al comienzo de los cálculos tenemos que determinar la cantidad de gas en el cilindro antes de la carrera de compresión. Usando la ley de los gases ideales, podemos encontrar la masa:

pV = mR específico T

dónde:

  • p es la presión absoluta del gas
  • m es la masa de sustancia
  • T es la temperatura absoluta
  • V es el volumen
  • específica es la constante de gas específica, igual a la constante de gas universal dividida por la masa molar (M) del gas o mezcla. Para aire seco R específico = 287.1 J.kg -1 .K -1 .

Por lo tanto

m = p 1 V 1 / R específico T 1 = (100000 × 500 × 10-6 ) / (287.1 × 293) = 5.95 × 10 -4 kg

2)

En este problema se conocen todos los volúmenes:

  • 1 = V 4 = V máx = 500 × 10 -6 m 3 (0.5l)
  • 2 = V min = V max / CR = 25 × 10 -6 m 3

Tenga en cuenta que (V max – V min ) x número de cilindros = desplazamiento total del motor

Dado que el proceso es adiabático, podemos usar la siguiente relación p, V, T para procesos adiabáticos:

así

2 = T 1 . CR κ – 1 = 293. 20 0.4 = 971 K

3)

Nuevamente, podemos usar la ley de los gases ideales para encontrar la presión al final de la carrera de compresión como:

2 = mR específico T 2 / V 2 = 5.95 × 10 -4 x 287.1 x 971/25 × 10 -6 = 6635000 Pa = 66.35 bar

4)

Como el proceso 2 → 3 ocurre a presión constante, la ecuación de estado de gas ideal da

3 = (V 3 / V 2 ) x T 2 = 1942 K

Para calcular la cantidad de calor agregado al quemar la mezcla de combustible y aire, agregue Q , tenemos que usar la primera ley de la termodinámica para el proceso isobárico, que establece:

add = mc p (T 3 – T 2 ) = 5.95 × 10 -4 x 1010 x 971 = 583.5 J

5)

Eficiencia térmica para este ciclo Diesel:

Como se dedujo en la sección anterior, la eficiencia térmica del ciclo Diesel es una función de la relación de compresión, la relación de corte y κ:

dónde

  • η Diesel es la máxima eficiencia térmica de un ciclo Diesel
  • α es la relación de corte V 3 / V 2 (es decir, la relación de volúmenes al final y al inicio de la fase de combustión)
  • CR es la relación de compresión
  • κ = c p / c v = 1.4

Para este ejemplo:

η Diesel = 0.6467 = 64.7%

6)

El MEP se definió como:

En esta ecuación, el volumen de desplazamiento es igual a V max – V min . El trabajo neto para un ciclo se puede calcular utilizando el calor agregado y la eficiencia térmica:

net = add . η Otto = 583.5 x 0.6467 = 377.3 J

MEP = 377.3 / ( 500 × 10-6 – 25 × 10 -6 ) = 794.3 kPa = 7.943 bar

……………………………………………………………………………………………………………………………….

Este artículo se basa en la traducción automática del artículo original en inglés. Para más información vea el artículo en inglés. Puedes ayudarnos. Si desea corregir la traducción, envíela a: translations@nuclear-power.com o complete el formulario de traducción en línea. Agradecemos su ayuda, actualizaremos la traducción lo antes posible. Gracias.